Backyard Brains Logo

Neuroscience for Everyone!

+1 (855) GET-SPIKES (855-438-7745)


items ()

New Experiment released – The Human-Human-Interface

If you came by our booth at the Society for Neuroscience meeting last November in San Diego, perhaps you saw (and participated in) our newest experiment – the “human-human-interface.” When one person contracts their muscles, we use our EMG SpikerShield amplifier paired with an Arduino to cause a partner’s muscles to contract as well. Our first generation is now live, and we in the BYB research lab are currently working on the next generation for finer levels of muscle stimulation and interfacing with multiple muscle groups.

But, of course, the question now is: do you want to be the controlled, or the controller?

 

 


Backyard Brains Runs a 3-day Workshop for High School Teachers / Backyard Brains Tiene un Gran Taller Para Docentes De Colegio

During the days of January 8,9, and 10, 2014, Backyard Brains ran its most ambitious workshop yet – three days of teaching high school teachers how to build their own labs and teach neuroscience in their classroom. During this workshop, 6 teachers from Dunalistar High School in Las Condes, Santiago, learned:
-How to record electrical activity from muscles and neurons
Cable theory during earthworm conduction velocity experiments
-How to build your own electrophysiology lab on a minimal budget
-How to design electrical circuits for biosignals
-and many more experiments, such as effect of temperature on neurons, effect of oxygen on neurons, reaction time in humans, and fatigue.

Durante los días 8, 9 y 10 de Enero de 2014, Backyard Brains llevó a cabo su taller más ambicioso hasta la fecha- tres días enseñándole a profesores de enseñanza media a armar sus propios laboratorios y enseñar neurociencia en sus salas de clases. Durante este taller, 6 profesores del Colegio Dunalastair de Las Condes, Santiago, aprendieron:
-A registrar y grabar actividad eléctrica de músculos y neuronas
Teoría de cables en experimentos de velocidad de conducción en lombrices
-Cómo construir su propio laboratorio de electrofisiología con el mínimo presupuesto
-Como diseñar circuitos eléctricos para bioseñales
-y muchos experimentos más, como el efecto de la temperatura en las neuronas, el efecto del oxígeno sobre las neuronas, tiempo de reacción en humanos, y fatiga.

Notably, on day three, the teachers did their own experiments! We measured the fatigue rates of the deltoid muscle in various teachers of different ages (as you age, your muscle fatigue rate increases), the effect of cold temperatures on EMG signal quality (null result, we didn’t see anything), and the effect of harmlessly stretching an earthworm on its conduction velocity.

Es muy destacable que, en el tercer día, ¡los profesores hicieron sus propios experimentos! Medimos la tasa de fatiga del músculo deltoide de varios profesores de distintas edades (cuando envejeces, la tasa de fatiga de tus músculos aumenta), vimos el efectos de las bajas temperaturas en la calidad de la señal EMG (el resultado fue nulo, no observamos nada), y el efecto sobre la velocidad de conducción de una lombriz al estirarla.

The stretching experiment was a new experiment we had not previously tried! The theory is that if you harmlessly stretch a worm, you reduce the diameter of the nerve fiber, increasing internal axon resistance, thus reducing the length constant, and causing a reduction in conduction velocity. During this workshop, we had the first positive result of this effect (wav file here — you can analyze it yourself! The distance between the recording electrodes was 5 cm, and then we stretched the distance to 6 cm). What resulted was a statistically significant 0.75 ms difference in time. We are currently doing more experiments along this route and will post the full writeup on our experiment page soon. Stay tuned!

El experimento de estiramiento fue un experimento nuevo para nosotros, ¡no lo habíamos hecho! La teoría dice que si estiras con cuidado una lombriz, sin hacerle daño, estás reduciendo el diámetro de la fibra nerviosa, aumentando la resistencia interna del axón y de esa forma reduciendo la constante de longitud, lo que causa una reducción en la velocidad de conducción. Durante el taller obtuvimos el primer resultado positivo de este efecto (archivo .wav adjunto – puedes analizarlo tu mismo). La distancia entre los electrodos de registro fue de 5 cm, para luego estirar delicadamente esta distancia a 6 cm. El resultado fue estadísticamente significativo: 0,75 ms de diferencia en tiempo. Mientras escribimos esto, estamos haciendo más experimentos en esta línea, y pronto publicaremos el escrito completo en nuestra página de experimentos. ¡Atentos!

We thank Cecilia Montecinos, the Head of the Science Department at Dunalastair- Las Condes, for taking a risk on us and asking us to run our first long format workshop. It was great way for us to begin 2014.

Nos gustaría agradecer a Cecilia Montecinos, jefa del Departamento de Ciencia del Colegio Dunalastair – Las Condes por arriesgarse con nosotros y pedirnos realizar nuestro primer taller en formato extendido. Para nosotros fue una gran forma de comenzar el 2014.

If you are interested, here is the schedule we used for the workshop: If you are a high school teacher who is interested in Backyard Brains coming to your school for a 2-3 day professional development workshop, feel free to contact us! We work for you!

Nota: Si les interesa, el calendario de actividades final está a continuación: Si usted es un profesor de enseñanza media interesado en que Backyard Brains vaya a su colegio por un taller de desarrollo profesional de 2-3 días, por favor contáctenos. ¡Nuestro trabajo es para ustedes!


In Celebration of Open Source Lab Equipment and 3D printing

We are big believers in the power of 3D printing to allow labs and scientists to share their inventions around the world, making experiments easier and scientific progress faster. We bought our first MakerBot in April of 2012, and our current “Fleet” of 3D printers at Backyard Brains now numbers three (two MakerBot Replicator Originals (wooden), and one MakerBot Replicator 2X).

We use our 3D printers for both design and production. Our Manipulator,  RoachScope, and Completo are made to order hot off the 3D printing platform! We have all our 3D designs and .stl files available on the product pages, and occasionally an enterprising gearhead scientist decides she/he doesn’t need to buy our tools and can just build the equipment from our files. We like that, as scientists being scientists, they often tweak the inventions for their own needs, using their creativity and hands to create something new.

Enter Tom Baden, a close colleague of ours who is part of the founding team of of TReND in Africa and also a neuroscience post-doc at the Centre of Integrative Neuroscience (CIN) in Tuebingen, Germany. He has often used our equipment for his outreach in Uganda and has a bit of the gearhead bug inside his brain. Over the past month, he tweaked our manipulator design to

1)    have a vertical z-axis (rather than our 45° z-axis)

2)    be able to accommodate micro-servo motors controlled by Arduino (work in progress)

Being a rational Europoean scientist, he converted the design to use metric screws rather than the silly imperial screws we use. Look at what he came up with!

(with micro-servo) – printed by Tom on his K8200

(without micro-servo) – printed at Backyard Brains on the Replicator 1

His design is now available for you as well!! He posted all his design files on thingiverse, and you can now tweak his modification too. Hack away intrepid inventors and scientists!