Backyard Brains Logo

Neuroscience for Everyone!

+1 (855) GET-SPIKES (855-438-7745)


items ()

Getting Started with the Muscle SpikerShield Pro

Hey everyone! I’m Pablo, a junior from Nido de Aguilas High School in Santiago, Chile. In my free time, I like to doodle and run.

My project is a multi-channel version of the experiment that my colleague and friend Cristian developed: it consists of using the SpikerShield Pro’s ability to get data from multiple channels to create a musical instrument. In this instrument, flexing a muscle is analogous to playing a key in a keyboard. Obviously, the amount of channels limits this keyboard to six notes, but according to my limited musical knowledge, this is enough to create a coherent melody. In fact, the Arduino program currently has four settings which can be accessed using the red button: Mary Had a Little Lamb, Frere Jacques, major pentatonic scale and the minor blues scale. All the notes are in arrays with six elements, each corresponding to a channel. To add more possibilities, holding the white button in the board makes all the notes in the current setting one octave higher. You can download my code here.

The “loop” part of the code works by reading the red button, white button, and all six channels. First, it decides which set of notes to use for that iteration of the loop, which is controlled by the red button, then it checks if the white button has been clicked, which affects the pitch of the final note it plays. The last step is to decide which tone to actually play, which the code does by selecting the largest reading of all the muscles. Now, you might be thinking that playing music with two vastly different muscles, say your forehead and your forearm, will never work because a signal from the forearm will always be bigger than the signal of even the strongest forehead flex. However, the SpikerShield Pro can control the gain from each individual channel (the little white knobs) which can make a channel more or less sensitive to a signal, so every muscle has a fair chance of being played.

One challenge I faced when I developed this project is the lack of documentation of this particular product for novice programmers. Most of the times I’ve played around with an Arduino, I’ve relied extensively on the built-in tutorials and online resources, but this time I only had the board’s schematic, which at first glance bears a closer resemblance to black spaghetti than a discernible circuit and the default program which sends the signals from the board to Spike Recorder. Running the aforementioned program was not a challenge, but reading the code, not being fully aware of what it was, proved to be confusing. I only started making progress once Tim Marzullo showed me an outdated sketch meant for this shield. However, with this project in the open, I doubt this is a problem other users will face; the heart of the code — presenting the sensor’s readings as an array and mapping those raw values to a usable scale — can be used for most projects.

The second biggest challenge was and still is, my absolute ignorance about music theory. I never learned to play an instrument, and the most complicated song I managed to play is “Hot Crossed Buns”, though that is probably a skill I’ve lost. I’ve always enjoyed music, but much like hot dogs, I preferred to enjoy the finished product rather than learning how it is made. After adding the melody of Mary Had a Little Lamb and Frere Jacques, I did not know what other songs to add. After a fair amount of research, I came upon pentatonic scales, which are comprised of five notes.

Though the musical aspect is worth examining, what attracted me more is its role in many musical traditions, ranging from the ancient Greeks to the Andes. During the 19th century, composers like Debussy used the simplicity of the scale to create a folksy in their composition, resulting in music like La fille aux cheveux de lin. Later on, rock, blues, and jazz artists adopted the scale as a tool for their respective styles of improvisation. I think this is the area where my particular instrument shows the most potential because it is only capable of playing one note at a time, and also because flexing muscles to create sound is very intuitive. However, this is a hypothesis I will let the reader confirm.


Backyard Brains Fellowship 2018

Call for Undergraduates in Biology or Engineering Fields:

Are you a neuroscience nerd? Do you want to learn how the brains of animals like squids or dragonflies work? Is your background in Electrical, Mechanical or Computer Engineering? Want to develop your own innovative experiments and publish your results? Learn to communicate those stunning results with the public? Maybe even all of the above? Then you’re in luck!

2017 Fellows from left to right: Top: Greg Gage (Not a fellow), Zach, Jaimie, Spencer, Nathan, Ilya. Bottom: Joud, Christy, Haley.

The Backyard Brains Summer Research Fellowship is an intensive 10 week program for undergraduates to participate in hands-on neuroscience research and experiment design with award winning neuroscientists. This is the 5th year of running our prestigious (and paid) summer program and this year it will run from May 21, 2018 to Aug 3, 2018 in Downtown Ann Arbor, MI.   All applications must be received by noon eastern time (12:00 PM, EST) on March 22, 2018 to be eligible. We will be notifying applicants of their status by March 29, 2018.

 

Apply to the Summer Fellowship Today!

 

 

This is our 5th iteration of the program, and it just gets better every year. Like a fine wine! Our summer fellowship program is run much like a graduate school laboratory. All participants will be working on their own independent research projects for the whole summer.  We will have daily journal clubs to go over key papers and expand knowledge in the area, and each participant will be trained how to develop their own experiments and to build their own devices to perform those experiments.  You, future BYB scientist, will be collecting data, analyzing it, and presenting your results.

The end result of your summer fellowship will be a publishable experiment and video for our website, as well as a poster to be delivered at Undergraduate Research Poster Session of the Society for Neuroscience.  In 2017, all of our participants presented their research at a Undergraduate Research conference and some were selected to be posters at the Society for Neuroscience Conference. We also brought home the hardware to show for the hard work: all of our research fellows will be featured in a new TED show called “DIY Neuroscience,” which will begin airing on March 14. We will work with each student to prepare a 10 minute TED-style talk for a public event in Ann Arbor, with the possibility of presenting at our annual TEDx event. We have also worked with students to continue refining their experiment writeups into manuscripts in order to publish first-authored papers in peer-reviewed journals.

 

Apply to the Summer Fellowship Today!

(more…)


The 2017 Summer Fellowship Concludes

Over 11 sunny Ann Arbor weeks, our research fellows worked hard to answer their research questions. They developed novel methodologies, programmed complex computer vision and data processing systems, and compiled their experimental data for poster, and perhaps even journal, publication. But, alas and alack… all good things must come to an end. Fortunately, in research, the end of one project is often the beginning of the next!

Some of the fellows intend to continue working with on the research they began here while they’re away and many of these projects will be continued next summer! Definitely expect to hear updates from Nathan’s EEG Visual Decoding project and Joud’s Sleep Memory project. Additionally, two of the projects will continue throughout the next few months: Zach’s Songbird Identification and Shreya’s Electric Fish Detector projects will continue through to December!

Meet the Fellows, See the Projects

The fellows are off to a great start! Check out their blog posts introducing their projects:

Progress

 The team has been working hard to bring their projects to life. Check out these blog posts on their rig construction and data collection efforts!

Conclusions

Our fellows experience the peaks and valleys of research this summer, but they all came out on top! Check out their final posts for their results, posters, and other details!

Continuations…

A few of our fellows are staying on throughout this next semester for longer term development projects! Zach is going to be back to working with his team on the Songbird Identification Device project, and Shreya will be working through to December on the Electric Fish Detector project. Expect updates on their progress from them soon!