Backyard Brains Logo

Neuroscience for Everyone!

+1 (855) GET-SPIKES (855-438-7745)


items ()

Backyard Brains at A2 Tech Trek!

2016a2techtrekpagebannerwebsize1

On June 17th, the A2 Tech Trek took place in downtown Ann Arbor hosted by Ann Arbor SPARK. The purpose of the Tech Trek was for ‘Downtown Ann Arbor technology companies opening their doors to the public’. Over 50 companies participated in this event with close to 500 people pre-registered. Backyard Brains participated in this year’s Tech Trek, and tried to get more involved with the community.

For the Tech Trek, we set up products including The RoboRoach, Human-Human-Interface for the public to enjoy. “Neuroscience for everyone”, indeed.

A son controlling his father’s arm, and his father looked so excited with our Human-Human-Interface.

Can you imagine controlling your friend’s arm? Make it reality with our Human-Human-Interface.

How cool is our RoboRoach? The RoboRoach is for everyone, too!

Our interns also prepared and presented their on-going projects. More than 300 people came to All Hands Active where most of the interns’ projects were set up. The interns spent their time explaining their projects to small groups of people who were interested in their project works. Most of the visitors were high school students interested in either neuroscience or tech and their parents. We hope it has helped people get closer to neuroscience! 

 


Middle School students awarded for their Neuroscience experiments using the SpikerBox

Two students from Stone Magnet Middle School in Florida, with the guidance of their teacher, Richard Regan, decided to make their science projects in neuroscience. We feel we’ve accomplished our core mission by just being able to write this statement:  that today it is an option for students in middle school to make neuroscience experiments and get closer to the complex organ that the brain is.

Thanks to the trust that schools like Stone Magnet Middle School, have in our tools, together we’ve been able to reach back earlier in the education process so students can start thinking about becoming brain scientists, and help us understand how the brain works, because even after 240 years of studying electrophysiology we still have almost no idea.  We are in the darkness, we are inside a black box.

But today is a great day, because Carson and Ritika from Stone Magnet Middle School, are shedding light on how the nervous system works.  Not only did they made neuroscience experiments, but they won science fairs presenting their results:

Cason, a 7th grade student, conducted a study titled: A Comparison of the Effects of Natural Supplements to OTC Painkillers on Electrical Nerve Impulses.

Ritika is an 8th grader. Her study was titled: The Effects of Caffeine and Serotonin on the Rate of Neurotransmission in the Discoid Roach, Blaberus discoidalis.

At their school fair in January, Ritika and Carson both won first place in their categories. At the regional science fair Ritika took a 1st and Best of Show, while Carson won second place.  This allowed Ritika to advance to the state science and engineering Fair, which is the largest academic event in Florida for middle and high school students.

The 61st Florida State Science and Engineering Fair took place in April with over 800 of the best student researchers in Florida participating.  Ritika won 1st place in the Biomedical category and Best of Show for Biological Science. This is as far as a middle school student can advance in traditional science fair competitions.

Thanks Carson, Ritika and Richard for helping us understand the brain, and for giving these neuroscience experiments visibility through great work that has been awarded.

You can download Ritika’s original paper here . She wrote very detailed experimental methods so you can reproduce the experiment yourself if you want to.

For both projects the students used a Neuron Spikerbox
More experiments you can do with this bio-amplifier can be read here: Getting Started with SpikesRate Coding, Effect of Temperature on neuronsMicrostimulation of neurons and MusclesReferencing your SpikesEffect of Nicotine and MSG on neuronsNeuroProstheticsOxygen and Spiking

 


Mind Control. With Lasers.

Coming soon to a backyard near you.

At least, that’s the idea. We’re sure the technology will catch up if we give it enough prodding and throw an intern or two its way. And hey if not? There’s still lasers, sounds like a win/win to me. Wait we don’t get lasers either? This is really going downhill fast. Apparently the higher ups don’t think beams of focused high energy photons wantonly sprayed at the brains of schoolchildren is good science.

science_child

I don’t see why anyone would have a problem with this

Ok you know what, how about beams of somewhat lower energy photons, and brains of something whose parents won’t send us more angry letters after little Johnny tattletale has another run in with the burn ward. How about LEDs and a bug? Well then.

Mind control.

Coming soon to a backyard near you.

And it is. Technically. So long as the mind you want to control is our tough lil buddy Drosophila Melanogaster AKA the fruit fly. And so long as the nefarious deeds you want your insatiable army of insect minions to thoughtlessly carry out is…sticking out their tongue. THEN YES. We’ve got mind control.

fly_regulation_apparatus

It’s called optogenetics, and it’s pretty crazy stuff, really. Long story short, we can stick a gene into the fruit flies that makes certain neurons, say, the sweet taste receptor Gr5a, sensitive to certain wavelengths of light-in this case, red light, because it is capable of passing through their exoskeleton into the neurons beneath. That way, if you set the little guys in front of an LED and blast away, they think the Kool Aid man just suplexed their face. And what is a fruit fly’s reaction to opening the floodgates of sugary heaven? They stick out their tongue.

It turns out you can rig up an LED with a microcontroller so that when two wires from the circuit come in contact with the fly, it completes the circuit, treating the fly as a resistor, and activates the LED. This lets us time contact with the fly to when the fly receives light (and therefore sweet-tasting) stimulation.

https://www.youtube.com/watch?v=LEyBSmHnnKA

If that was a little hard to see, here’s an up close and personal version of the events.

https://www.youtube.com/watch?v=fwNUyFWzp5o

And of course, nothing is truly scientific until we’ve mechanized it

https://www.youtube.com/watch?v=sgGOvc-04gY

It might sound trivial, but there’s actually a lot to getting a response like this without any invasive action other than light stimulation. Optogenetics really opens a lot of possibilites up for experimentation that just weren’t feasible before. It took the world of neuroscience by storm just a few years ago and is on the short list for the Nobel Prize, and we‘ve got a crack team of top scientists working to bring this technology to your own backyard.

Ok, slight exaggeration again, maybe, they’re actually interns working on it. Well, an intern. But we’ve stuck him in our basement with a steady supply of mountain dew and cheetos, and if that’s not science, I don’t know what is.

intern_feed_station

Science!

I’ve just been told that in fact its not actually science. According to them, “good science” involves some sort of method, and numbers, and repeatable experimentation. Apparently blood, sweat and cheeto dust just aren’t enough for some people. We’ll have the intern fill you in on the details.