Backyard Brains Logo

Neuroscience for Everyone!

+1 (855) GET-SPIKES (855-438-7745)


items ()

Stationary Electrodes Are The New Black

One of the core tenets of Backyard Brains is our slogan, neuroscience for everyone! We constantly work to drive the world around us into the neurorevolution, and when we hear about projects like Peter Buczkowski’s master’s thesis, we know we’re doing something right.

Peter Buczkowski graduated graduated in 2013 with a Bachelor of Arts and in 2017 with a Master of Arts in the Digital Media from the University of the Arts in Bremen. His idea for his masters thesis was born out of a TENS unit, after seeing our Human-Human Interface TED Talk. “I especially liked the receiving part of possessed hand experiment and the idea to use the human as an interface. This inspired me to do my own experiments in that field,” Peter told us. “I chose three topics and build three projects to cover a wide spectrum so one can see the possibilities of this technology in different areas.”

Peter started out with the most basic of scientific endeavors: solving a problem. Doing any sort of human neuroscience or biofeedback research is made a little more difficult the fact that most types of patch electrodes are sticky and a hassle to use, not to mention not very aesthetically pleasing. So he set out to fix that, and now, his projects center around the idea of “stationary” electrodes: not necessarily something attached to the body, but something that a person can just hop onto and start learning. His three projects deal with photography, video game skill, and muscle memory, using the paradigms apparent in our Human-Human Interface experiments to create his designs.

The Prosthetic Photographer

His first project is called the Prosthetic Photographer. “The Prosthetic Photographer is a modular camera attachment that forces you with electric impulses to take beautiful pictures,” Peter wrote. Typical advice for a budding photographer is just to go out and take thousands of photos, and you will learn the difference between and okay shot and a beautiful one. The Prosthetic Photographer aims to shorten that process through machine learning. Using machine learning to distinguish between high and low quality photos and neural networking to connect the computer, the camera, and the user, the ProstheticPhotographer is an example of machine learning and human learning coming together. 

The device is a modular one that can be added to any compatible camera, utilizing a TENS unit to render the user as a conduit for its learning, controlling the photographs being taken and teaching its concept of aesthetics to the user. Electrodes on the camera’s handle transmits a shock signal to the user causing an involuntary press of a button, and a subsequent shutter click. A camera with its own eye for beauty! Photography will never be the same.

Twitch

Building upon the machine learning aspect of his work, Peter moved on to his second project, utilizing Twitch to condition people to play video games perfectly. Twitch.tv is an online streaming platform that lets gamers both showcase their play and observe others in order to beat a particularly hard section of a game. This unconventional style of video game play gave Peter an idea: what if a computer were to tell you what your next move is?

 

In a version of the classic computer game “Snake,” a computer calculates whether the next move should be left, right, up, or down, dividing the buttons between two electrode arrays (one for each hand). The computer then transmits its decision to the corresponding button and stimulates the finger to press that button, and the snake moves in the decided-upon direction. Sure, it takes the human guesswork out of the game, but without a human, it would not be possible!

The Medium Machine

Finally, Peter built the Medium Machine, the most speculative of his projects. According to his website, “The Medium Machine enables [a computer] to transfer data and information in the form of muscle contractions into the unconscious mind of a human.” The inspiration for this project arose from a short story called “Johnny Mnemonic” by William Gibson, in which a man’s brain is turned into a sort of repository for information that he transports from client to recipient. With the Medium Machine, Peter hoped to effect a similar repository–albeit without removing the user’s memory to make room for it. Again, the muscles are connected to stimulation, this time encoded by the computer in a certain pattern or message. The contractions force the finger to push a button in a cadence that could mean anything–until it is decoded by the right person.

“The human becomes a medium and a messenger between systems,” Peter wrote. Just like in the story! The possibilities for discovery and the applications of the science are endless. 

We are very intrigued to follow along with Peter as he pursues these projects and starts more. He is currently working with other innovators to create business plans for their projects. Learn more about Peter’s work on his website, http://peterbuczkowski.de/

Do you have an application of our products, or a story to share about your own work? Send us a message at hello@backyardbrains.com!


November Conferences

November is always a busy month at Backyard Brains, and this year was no exception! We expanded our conference tour to four conferences across two continents, from California, USA to Belgrade, Serbia.We did thousands of demos for new customers and promoted nearly 10 new products coming to BYB in 2019. Here are some tidbits about our domestic endeavors. 

SFN: Society for Neuroscience Conference

The Society for Neuroscience Conference is our annual Big Event. We’ve been going for years and always have BYB members from all over the world converge to give demos and sell our wares. We like to brag that we have the most interactive exhibit at SFN, and we think our attendees would agree!

As we continue our work to make neuroscience accessible, we are finding that there is a surprising lack of opportunity for many undergraduate students to do hands-on neuroscience labs. SFN is a great opportunity to meet with Professors and undergraduate instructors are looking for affordable ways for their undergrads to begin performing meaningful labs and research. For fractions of the cost of a single “research grade” rack, professors can outfit their labs with electrophysiology gear for every student! Not only that, but many undergrad and graduate students are similarly looking for tools which can empower their neuroscience outreach efforts, and are excited to discover us as they wander the exhibit hall at SFN.

Perhaps the quickest Demo to Classroom conversion ever – On the 4th, we demoed the Human-Human to the NW Noggin team. They bought one on the spot, and then on the 5th, they demoed it to hundreds of elementary schoolers! They came back on the 6th to ask for more electrodes. We eagerly stuffed their bags! Welcome to the Neurorevolution, NW Noggin!

NABT: National Association of Biology Teachers Conference

This year, we did a week-long conference binge! As soon as we put a wrap on SFN, we packed our bags, moved to a different San Diego hotel, and set up for our second weekend conference! We had the opportunity to meet up with Biology teachers from all across the country at the National Association of Biology Teachers conference (What a mouthful, we’re thankful for acronyms) or NABT.

Biology teachers are our people. There is a great deal of neuroscience in the General/Honors track biology curriculum, as students learn about the nervous systems of vertebrates and invertebrates. Biology teachers are also some of the most hands-on teachers we know. No other required classes have such an emphasis on hands-on learning, making BYB and Bio a natural fit.

CSTA: California Science Teachers Association Conference

One last break from winter in the midwest for Will — the California Science Teachers’ Association recently hosted their annual conference in sunny Pasadena. Will made the trip solo to introduce science educators from all across the great state of California to the exciting world of hands-on neuroscience. His message was Backyard Brain’s message: Neuroscience is the perfect blend of STEM and the Life Sciences, showing students the fascinating intersection of all the different disciplines they are studying.

We’re pushing onwards and finishing 2018 with a bang! We look forward to where our conference tour will take us next year. Have somewhere you think we should visit? Give us a shout on Twitter or email us at hello@backyardbrains.com!


Taiwanese Student Organizes Outreach

Neuroscience has a way of inspiring people from all walks of life. After all, we all have brains, no matter where we come from! This story comes to us from Taiwan, where Chiao-chi,Chou studies, a 21-year-old student and interactive installation artist in the Department of Communications Design of Shih Chien University. Chiao-chi discovered our products earlier this year, and they inspired her to create her own projects based on our Plant SpikerBox. She contacted us with a proposal to lead a workshop in a neighboring town in early November, teaching primary school children about the science of plant motion.

Chiao-chi grew up in an out-of-the-way village in central Taiwan, where her parents did plant research in the mountains. The educational resources there were relatively scarce, and when she found out about Backyard Brains, she immediately knew it was something she would’ve loved as a child: “Maybe I can go back to my elementary school to hold a workshop for bringing new knowledge to other children, like Backyard Brains bringing to me,” she thought, and started work on her project. “It is very meaningful for me to have this opportunity to bring educational resources home.”

Our Plant SpikerBox is one of the more interesting aspects of our collection, as the organism it works on doesn’t actually have a brain, but some plants move in response to stimulus the way that our bodies do. For her research, Chiao-chi expanded on the open-source nature of our design, “intend[ing] to extend the possibilities of the Plant SpikerBox. [What if] it allowed us to feel the perceptions of plant? If plant had the consciousness and how will we to perceive it? With setting various degree of bioelectrical potential patching on arm to simulate the different magnitude force press to the Mimosa, me and my partner would like to invite people to think the above questions.” Chiao-chi and her partner successfully designed, cut, and assembled their project, pictured below.

The models they created involved rock-cut wood that was assembled into two separate stereo models: one shaped like a human arm, and one like the stem of a plant, specifically the Sensitive Mimosa, both hinged at joint to mimic each other’s shape. “The arm model is controlled by two syringes to help students understand the antagonist muscle,” Chiao-chi said. “[The] mimosa model also uses the hydraulic principle to express the turgor movement.” In terms of the hardware, she built a green circuit board, modified according to the open-source circuit diagram for the Plant SpikerBox, and set up an oscilloscope on the board to allow viewers to see the waveforms of human and plant action potentials, just like the Plant SpikerBox. As seen below, the modified board was hooked up to both a plant and a person via electrodes. 

As excited as she was about her research, she wanted something else: to share her knowledge with other students. So, she proposed a plan to the local primary school teacher. She would plan and facilitate a workshop with primary school students, training a number of assistants prior to the event, and helping the students to build their own devices and do the experiment. Her proposal was eagerly accepted, and after weeks of preparation and training, the workshop occurred in early November! Eleven students were mentored through the process of building and performing experiments with her models and her designs based on the modified Plant SpikerBox. A simplified version of the one pictured above was utilized in the workshop, and students volunteered to hook themselves up to a plant and feel what happens when they stimulated it.

The event was a hit! She writes: “The workshop ended satisfactorily yesterday and the children actively participated in the event. I explained to the students the structure of muscle and mimosa in the morning, which mentions the role and difference of vacuole in animal cells and plant cells. At the stage of making the toys, we saw that they used the remaining wood to decorate the finished product. After the lunch break, we explain the basic electrical concepts and lead students to measure the micro-energy of plants. I also let the children use the modified Plant SpikerBox. [T]he children expressed their surprise at the new knowledge and complained about the bad lunch (because I ordered a lot of greens lol). All in all, we had a great time. The lovely students are also looking forward to the next event!”

Chiao-chi,Chou is currently applying to the Institute of Cognitive Neuroscience of National Central University to continue her studies. We wish her all the best in her future neuroscience endeavors, and eagerly look forward to hearing about any future workshops she brings to fruition. Welcome to the NeuroRevolution, Chiao-chi,Chou, it is wonderful to have you here!

Let us know if you’d like some guidance on leading a Backyard Brains workshop in your town! Email us at hello@backyardbrains.com and pitch us some ideas! We’re always looking to spread the NeuroRevolution!