Backyard Brains Logo

Neuroscience for Everyone!

+1 (855) GET-SPIKES (855-438-7745)


items ()

Middle School students awarded for their Neuroscience experiments using the SpikerBox

Two students from Stone Magnet Middle School in Florida, with the guidance of their teacher, Richard Regan, decided to make their science projects in neuroscience. We feel we’ve accomplished our core mission by just being able to write this statement:  that today it is an option for students in middle school to make neuroscience experiments and get closer to the complex organ that the brain is.

Thanks to the trust that schools like Stone Magnet Middle School, have in our tools, together we’ve been able to reach back earlier in the education process so students can start thinking about becoming brain scientists, and help us understand how the brain works, because even after 240 years of studying electrophysiology we still have almost no idea.  We are in the darkness, we are inside a black box.

But today is a great day, because Carson and Ritika from Stone Magnet Middle School, are shedding light on how the nervous system works.  Not only did they made neuroscience experiments, but they won science fairs presenting their results:

Cason, a 7th grade student, conducted a study titled: A Comparison of the Effects of Natural Supplements to OTC Painkillers on Electrical Nerve Impulses.

Ritika is an 8th grader. Her study was titled: The Effects of Caffeine and Serotonin on the Rate of Neurotransmission in the Discoid Roach, Blaberus discoidalis.

At their school fair in January, Ritika and Carson both won first place in their categories. At the regional science fair Ritika took a 1st and Best of Show, while Carson won second place.  This allowed Ritika to advance to the state science and engineering Fair, which is the largest academic event in Florida for middle and high school students.

The 61st Florida State Science and Engineering Fair took place in April with over 800 of the best student researchers in Florida participating.  Ritika won 1st place in the Biomedical category and Best of Show for Biological Science. This is as far as a middle school student can advance in traditional science fair competitions.

Thanks Carson, Ritika and Richard for helping us understand the brain, and for giving these neuroscience experiments visibility through great work that has been awarded.

You can download Ritika’s original paper here . She wrote very detailed experimental methods so you can reproduce the experiment yourself if you want to.

For both projects the students used a Neuron Spikerbox
More experiments you can do with this bio-amplifier can be read here: Getting Started with SpikesRate Coding, Effect of Temperature on neuronsMicrostimulation of neurons and MusclesReferencing your SpikesEffect of Nicotine and MSG on neuronsNeuroProstheticsOxygen and Spiking

 


Mind Control. With Lasers.

Coming soon to a backyard near you.

At least, that’s the idea. We’re sure the technology will catch up if we give it enough prodding and throw an intern or two its way. And hey if not? There’s still lasers, sounds like a win/win to me. Wait we don’t get lasers either? This is really going downhill fast. Apparently the higher ups don’t think beams of focused high energy photons wantonly sprayed at the brains of schoolchildren is good science.

science_child

I don’t see why anyone would have a problem with this

Ok you know what, how about beams of somewhat lower energy photons, and brains of something whose parents won’t send us more angry letters after little Johnny tattletale has another run in with the burn ward. How about LEDs and a bug? Well then.

Mind control.

Coming soon to a backyard near you.

And it is. Technically. So long as the mind you want to control is our tough lil buddy Drosophila Melanogaster AKA the fruit fly. And so long as the nefarious deeds you want your insatiable army of insect minions to thoughtlessly carry out is…sticking out their tongue. THEN YES. We’ve got mind control.

fly_regulation_apparatus

It’s called optogenetics, and it’s pretty crazy stuff, really. Long story short, we can stick a gene into the fruit flies that makes certain neurons, say, the sweet taste receptor Gr5a, sensitive to certain wavelengths of light-in this case, red light, because it is capable of passing through their exoskeleton into the neurons beneath. That way, if you set the little guys in front of an LED and blast away, they think the Kool Aid man just suplexed their face. And what is a fruit fly’s reaction to opening the floodgates of sugary heaven? They stick out their tongue.

It turns out you can rig up an LED with a microcontroller so that when two wires from the circuit come in contact with the fly, it completes the circuit, treating the fly as a resistor, and activates the LED. This lets us time contact with the fly to when the fly receives light (and therefore sweet-tasting) stimulation.

https://www.youtube.com/watch?v=LEyBSmHnnKA

If that was a little hard to see, here’s an up close and personal version of the events.

https://www.youtube.com/watch?v=fwNUyFWzp5o

And of course, nothing is truly scientific until we’ve mechanized it

https://www.youtube.com/watch?v=sgGOvc-04gY

It might sound trivial, but there’s actually a lot to getting a response like this without any invasive action other than light stimulation. Optogenetics really opens a lot of possibilites up for experimentation that just weren’t feasible before. It took the world of neuroscience by storm just a few years ago and is on the short list for the Nobel Prize, and we‘ve got a crack team of top scientists working to bring this technology to your own backyard.

Ok, slight exaggeration again, maybe, they’re actually interns working on it. Well, an intern. But we’ve stuck him in our basement with a steady supply of mountain dew and cheetos, and if that’s not science, I don’t know what is.

intern_feed_station

Science!

I’ve just been told that in fact its not actually science. According to them, “good science” involves some sort of method, and numbers, and repeatable experimentation. Apparently blood, sweat and cheeto dust just aren’t enough for some people. We’ll have the intern fill you in on the details.


Gift from Iran thanks to Open Source: cockroach research tools and experiments made by students

On January 1st, we received a New Year’s gift from another continent: Neuroscience tools and experiments made by a group of high school students selected from the 20 best rated schools of Iran. They were written lab reports, submitted for an interdisciplinary neuroscience competition that utilized our open source experiments with cockroaches as a resource for the kids to make their own research and inventions.We here summarize and celebrate their efforts, you can also download the original reports yourself. This is a result of our 3 year friendship with Mohsen Omrani, an Iranian neuroscientist, doing research in nearby Ontario, Canada. He acts as a community liason between the Iran Science communities and the wide network of scientists around the world (Every Iranian Neuroscientist we know seems to be a colleague of Mohsen).

image00

Of note is that in Iran, students choose to follow a biology route or a mathematical root when they are in the 9th grade. There was an emphasis for each team to have students with both biology background and mathematics background so they learn to be able to communicate with each other. So what then did the students investigate?

To begin, a question we often are asked is: “Why Cockroaches?” Indeed this was also asked by members of the Allameh Helli 4 High-school: they submitted the hypothesis that the cockroach is the perfect “explorer” companion for a researcher,  because of their access and survival in complicated and uncertain environments. In other words, they declare that roaches could become better tools than robots for scientists to reach unknown places. The main influences for this conclusion was the article “Line following terrestrial insect biobots” by Tahmid Latif and Alper Bozkurt .

The most remarkable thing about this competition is not that the students built their own tools for the experiments using open source resources, like schematics, code and design… but they made their own custom modifications to design different experiments from the ones we had made.

One excellent example of this is the Robo Roach version (a remote controlled cockroach)  of Alireza Farzad, Behzad Haghgoo, Amir Reza Haji Anzehaei, Aria Hassanpour, Mohammad Reza Osouli of  Allame Helli one High School.

They used an IR System to send a signal to a IR receiver circuit that’s connected to the cockroach antenna AND their cerci. We have only begun cercal stimulation, the Iranian students beat us to it! In words of the students:

“Cerci is a very sensitive organ which receives smallest movements of the air and warns the cockroach to run. We thought that cerci may have a low adaptation rate because it is directly related to its life being. By stimulating the cerci we make an illusion of danger and we make the cockroach run forward”.

Their results to this new experiment was that “ 3V potential difference is the best combination for cerci electric stimulation” and that the cockroach doesn’t adapt to the stimulation of the cerci, unlike the antennas that show strong adaptation properties.

Danial Zohourian and Amir Masoud Azadfar, from a different high school,  focused on cerci stimulation only, coming up with a very useful table of results on how fast the cockroach goes (steps/ per second) according to voltage.

Voltage Recorded Steps Steps per Second
0.5 10 steps in 7 seconds 1.42
1.0 9 steps in 3 seconds 3.00
1.5 12 steps in 4 seconds 3.00
2.0 13 steps in 3 seconds 4.33
2.5 10 steps in 5 seconds 2.00
3.0 13 steps in 4 seconds 3.25
3.5 No Respond Adapted

Interestingly, they had a different outcome than the students from Allame Helli one High School: they concluded that  best stimulation is at 2 volts, not 3, and that cercal stimulation does adapt.

So what is the correct answer?  Only that new experiments are necessary to understand why there are different results, and what improvements are important to obtain a more accurate conclusion. But as we have learned, the best experiments come from disputes between scientists that motivate each other to improve their work.

Regarding on this emphasis on possible errors to improve experiments, the writing of  students Tarannom Taghavi and Nastaran Fatemi, from Kherad high school caught our attention. They tried  to tackle the main problem of the Roboroach: the behvioral adaptation to the stimuli that controls the cockroach:  “ If we can produce the signals in it’s ganglion and send it to the cockroach, there won’t be adaptation anymore.  As we are creating the signals and sending it to its decision making  center, we might be able to take control of cockroach’s decision  making process.” They did this by recording roaches signal with a spikerbox and trying to send it back to the ganglia.

image03

Interpretation of the electric signal obtained from the cockroach.

 Although it wasn’t successful, coming up with this hypothesis to solve the main problem of RoboRoaches was impressively creative. And, as we noted, we really liked the focus of their paper in the mistakes that were made and how to make corrections for a future experiment: they were the only students that made emphasis on the importance of iteration, of making a lot of failed experiments that are patiently and constantly improved, before making any discovery. Thus our informal “Golden Cockroach” award goes to Tarannom Taghavi and Nastaran Fatemi.

Finally, we want to give a special mention to the only group that designed a new interface: a special cockroach treadmill  to estimate the adherence of these insects legs:

image01

Keep on inventing, Keep on discovering, our fellow young colleagues across the globe.

You can download the original writings here and see the competition video below