Secret Life of Jellyfish
Hello all! My name is Anastasiya and I’m a computer engineering and neuroscience double major at the University of Cincinnati. I’m curious about the world around me and my favorite thing to do is learn. My hobbies include making strange noises, fangirling over the fuel efficiency of my car, and volunteering while spreading knowledge to the general public. I mainly volunteer at the Cincinnati Observatory, home of the oldest professional telescope open to the public, and at Cincinnati Public Schools, where I help out with a Lego League robotics club and mentor a group of high school scholars.
This summer I’m investigating ‘The Secret Life of Jellyfish’, specifically, of the clytia hemisphaerica. They’re super tiny (they max out at about 20mm in diameter) and seem to be capable of doing things they shouldn’t be able to do. By that I mean that these jellyfish seem to exhibit relatively complex behaviors without making use of a brain (since they don’t have one). They’re also kind of ridiculous and paradoxical to me, because trying to lift one out of the water could easily kill the clytia since the surface tension of the water is too much for it to handle, but you can chop it in half and it’ll be just fine as two separate jellies. Weird (but cool)!
The current plan is to record videos of the jellyfish in various situations and then use some form of machine learning to figure out the jellies’ behavior. I’ve looked at some potential tracking software, libraries, and random snippets of code, and it seems that OpenCV is my best bet for analyzing the videos, so I’ve spent the last couple weeks learning about it and how to use it in Visual Studio 2017 with C++. But learning about code is not all I’ve done; I’ve also been preparing for the impending arrival of clytia hemisphaerica to our laboratory.
I first made sure to get a (hopefully) decent environment set up for them. Clytia hemisphaerica need salt water at a salinity of 1.0268, or 37 parts per thousand, and a small current to keep them swimming as this is critical to their health. The housing units I set up are based on the traditional beaker method and include 3.7L beakers (actually 6”x8” glass vases from Amazon) filled with artificial sea water as well as a constant current stimulator made of acrylic rectangles, hot glue, plastic pipettes, 12V 5RPM motors, some wires, and an AC to DC adapter. All of these things together should provide a nice home for the jellies when they arrive, but that is not all I need to prepare.
Jellyfish, like many living things, need a food source, and the one I’m preparing is artemia, otherwise known as brine shrimp. Brine shrimp are pretty easy to hatch, and just one cap-full of brine shrimp eggs makes a very large amount of baby brine shrimp, enough to turn an entire bottle and beaker a shade of orange. That must mean that, after a one-time investment of a large batch of artemia, I am all set on jellyfish food for the summer, right? Well, there’s a catch. The catch here is that clytia hemisphaerica should only eat 1.5 to 4 day old brine shrimp, and eating ones that are are outside this age range for prolonged periods of time could have deadly consequences for the poor jellies (and for my easily over-attached heart). This means I’ll have to constantly hatch and culture new batches of brine shrimp and keep track of hatch dates so I have the proper feed for these picky eaters.
At this point, I’m pretty sure everything is ready for the jellies to come in, and they should be gracing us with their presence any day now. I’m very excited to be working on this project as a fellow at Backyard Brains, and I can’t wait to see these jellyfish in person! The more I learn about them, the more mysterious and intriguing clytia hemisphaerica become, and I look forward to finding at least some pieces to the puzzle that is their behavior.