Backyard Brains Logo

Neuroscience for Everyone!

+1 (855) GET-SPIKES (855-438-7745)


items ()

Why are Neuroscientists Interested in… plants?

But Why Plants?

Recording an Action Potential from a Sensitive Mimosa!

With the Introduction of the The Plant SpikerBox, you can, for the first time ever, explore plant behavior and electrophysiology at home or in the classroom. But wait…. Plants? Why are neuroscientists interested in… plants…?

What has a brain?

When we work with young students, we often begin by asking them “What has a brain?” You get your typical responses, like “I have a brain,” “my dog,” “my cat,” etc. Then we ask them to clarify, how are they defining that category, and often we hear the response “They move on their own!” This is true, and the mechanics behind movement in brained creatures is a fundamental element of neuroscience and electrophysiology. But, there are living creatures without neurons that move: Plants!

Certainly you’ve seen a plant growing towards the sun, opening up its leaves or petals during the day for better exposure or pollination, but what’s more, there are some plants which exhibit rapid movements in response to direct stimulation. We created the Plant SpikerBox to record the electrical activity of these plants! Like the Neuron or Muscle SpikerBox, the Plant SpikerBox is a kit which is designed to make electrophysiology preps easy, so that students and teachers can focus on the science and experiments and not be bogged down by technical issues.

Disclaimer: Venus Flytraps do not have subterranean brains.

We proved this to be an idea worth spreading… Our 2017 TED Talk (Vancouver, BC) introduces viewers to this little-known world of plant electrophysiology. On the TED main stage, our CEO Greg Gage explains the principal elements of electrophysiology research, demonstrating that the electrical signals which control our own bodies are also present in plants! He proves this through a number of demonstrations, first by visualizing his heartbeat with our Heart and Brain SpikerShield, before moving onto the plants.

You can see the TED talk here!

To return specifically to the Plant SpikerBox, we encourage users to first find a Venus Flytrap, the plant that Darwin called “One of the most delightful plants in the world,” and investigate its eating behavior…

Venus Flytrap

In order to supplement its nutrition, Venus Flytraps capture and “eat” insects. In order to do so, they have to snap their traps shut quickly so their prey doesn’t escape. But how does the plant know when to snap its trap shut and how do the mechanics of this action work? 

Stimulating a Trigger Hair in a Venus Flytrap

Just like humans and animals, Venus Flytraps use electrical activity to move! Recording this signal with the Plant SpikerBox reveals that, like us, plants use “Action Potentials” to send movement signals! In the TED talk, Greg demonstrates how Venus Flytraps distinguish between false alarms and real prey. These are the amazing plants which inspired our interest in plant electrophysiology, we hope you find them as incredible as we do! Check out this experimental write-up to learn more!

Sensitive Mimosa

Anatomy of a Sensitive Mimosa and its Behaviors

Another interesting, rapidly moving plant is the Sensitive Mimosa, or Mimosa Pudica. Also known as the “shy,” or “bashful” plant, the Sensitive Mimosa will fold up its leaves and branches when it is touched or flicked. Using the Plant SpikerBox, you can experiment with the Sensitive Mimosa and discover how Action Potentials are responsible, again, for the dramatic movement response when you flick the stem of the plant. On the TED stage, Greg demonstrates these two kinds of behaviors, showing how the leaves fold up with soft touches, but entire branches fold when flicked. See the experiment here!

The Sensitive Mimosa has also received some attention lately following the announcement of the 2017 Novel Prizes! This year’s prize for Physiology or Medicine went to researchers who study circadian rhythms, or sleep cycles, which were originally discovered in the Sensitive Mimosa! For a great explanation, check out the Nobel Prize website!

Interspecies Plant-Plant-Communicator

But perhaps the most exciting experiment you can perform with your Plant SpikerBox is the Interspecies Plant-Plant-Communicator experiment. To demonstrate the ubiquitous nature of the action potential, Greg uses the Plant SpikerBox on the TED stage to capture a signal from a Venus Flytrap and send it into a Sensitive Mimosa…

Screencapture taken just a moment before Interspecies Plant-Plant-Communication is achieved…

The Plant SpikerBox and Plant Sciences have a lot of potentials (ha!). There are countless other experiments to be performed on these plants alone, but investigating other plants opens a world of opportunities. Perhaps the Trigger Plant or the Telegraph Plant are hiding electrical signals? Perform your own experiments! Let us know what you discover!

The Plant SpikerBox is available in our store, and the companion recording software, SpikeRecorder, is free to download.

What will you discover?


First Reaction Time Module Prototype Shipped! for a High School Science Project

One of the first ways neuroscientists were able to measure the “speed” of neural computation was via reaction time. A typical human reaction time, in which you push a button after seeing a light, is ~150-200 ms. With our new EMG SpikerBox, students can now measure the electrical activity of their muscles during movements. Thus, we have been designing reaction time modules that introduce a “tick” in a muscle recording so you can measure muscle contraction in response to a “stimulus” such as a light or a touch.  We’ve only used our prototypes internally for school demo’s over the past two months, but we received a call from a high school student last week requesting the gear for a science project! We were happy to say “bon voyage” to our first prototype, and we are now entering production in the next 1-2 months. Stay tuned to measure your own brain speed!

The Reaction Time Module plugs into the SpikerBox as a simple “pass-through” device…

…and when the light is activated, a tick appears in your recording! Note…we know 600 ms is on the slow end. Too much thinking about circuits….