Gift from Iran thanks to Open Source: cockroach research tools and experiments made by students
On January 1st, we received a New Year’s gift from another continent: Neuroscience tools and experiments made by a group of high school students selected from the 20 best rated schools of Iran. They were written lab reports, submitted for an interdisciplinary neuroscience competition that utilized our open source experiments with cockroaches as a resource for the kids to make their own research and inventions.We here summarize and celebrate their efforts, you can also download the original reports yourself. This is a result of our 3 year friendship with Mohsen Omrani, an Iranian neuroscientist, doing research in nearby Ontario, Canada. He acts as a community liason between the Iran Science communities and the wide network of scientists around the world (Every Iranian Neuroscientist we know seems to be a colleague of Mohsen).
Of note is that in Iran, students choose to follow a biology route or a mathematical root when they are in the 9th grade. There was an emphasis for each team to have students with both biology background and mathematics background so they learn to be able to communicate with each other. So what then did the students investigate?
To begin, a question we often are asked is: “Why Cockroaches?” Indeed this was also asked by members of the Allameh Helli 4 High-school: they submitted the hypothesis that the cockroach is the perfect “explorer” companion for a researcher, because of their access and survival in complicated and uncertain environments. In other words, they declare that roaches could become better tools than robots for scientists to reach unknown places. The main influences for this conclusion was the article “Line following terrestrial insect biobots” by Tahmid Latif and Alper Bozkurt .
The most remarkable thing about this competition is not that the students built their own tools for the experiments using open source resources, like schematics, code and design… but they made their own custom modifications to design different experiments from the ones we had made.
One excellent example of this is the Robo Roach version (a remote controlled cockroach) of Alireza Farzad, Behzad Haghgoo, Amir Reza Haji Anzehaei, Aria Hassanpour, Mohammad Reza Osouli of Allame Helli one High School.
They used an IR System to send a signal to a IR receiver circuit that’s connected to the cockroach antenna AND their cerci. We have only begun cercal stimulation, the Iranian students beat us to it! In words of the students:
“Cerci is a very sensitive organ which receives smallest movements of the air and warns the cockroach to run. We thought that cerci may have a low adaptation rate because it is directly related to its life being. By stimulating the cerci we make an illusion of danger and we make the cockroach run forward”.
Their results to this new experiment was that “ 3V potential difference is the best combination for cerci electric stimulation” and that the cockroach doesn’t adapt to the stimulation of the cerci, unlike the antennas that show strong adaptation properties.
Danial Zohourian and Amir Masoud Azadfar, from a different high school, focused on cerci stimulation only, coming up with a very useful table of results on how fast the cockroach goes (steps/ per second) according to voltage.
Voltage | Recorded Steps | Steps per Second |
0.5 | 10 steps in 7 seconds | 1.42 |
1.0 | 9 steps in 3 seconds | 3.00 |
1.5 | 12 steps in 4 seconds | 3.00 |
2.0 | 13 steps in 3 seconds | 4.33 |
2.5 | 10 steps in 5 seconds | 2.00 |
3.0 | 13 steps in 4 seconds | 3.25 |
3.5 | No Respond | Adapted |
Interestingly, they had a different outcome than the students from Allame Helli one High School: they concluded that best stimulation is at 2 volts, not 3, and that cercal stimulation does adapt.
So what is the correct answer? Only that new experiments are necessary to understand why there are different results, and what improvements are important to obtain a more accurate conclusion. But as we have learned, the best experiments come from disputes between scientists that motivate each other to improve their work.
Regarding on this emphasis on possible errors to improve experiments, the writing of students Tarannom Taghavi and Nastaran Fatemi, from Kherad high school caught our attention. They tried to tackle the main problem of the Roboroach: the behvioral adaptation to the stimuli that controls the cockroach: “ If we can produce the signals in it’s ganglion and send it to the cockroach, there won’t be adaptation anymore. As we are creating the signals and sending it to its decision making center, we might be able to take control of cockroach’s decision making process.” They did this by recording roaches signal with a spikerbox and trying to send it back to the ganglia.
Interpretation of the electric signal obtained from the cockroach.Although it wasn’t successful, coming up with this hypothesis to solve the main problem of RoboRoaches was impressively creative. And, as we noted, we really liked the focus of their paper in the mistakes that were made and how to make corrections for a future experiment: they were the only students that made emphasis on the importance of iteration, of making a lot of failed experiments that are patiently and constantly improved, before making any discovery. Thus our informal “Golden Cockroach” award goes to Tarannom Taghavi and Nastaran Fatemi.
Finally, we want to give a special mention to the only group that designed a new interface: a special cockroach treadmill to estimate the adherence of these insects legs:
Keep on inventing, Keep on discovering, our fellow young colleagues across the globe.
You can download the original writings here and see the competition video below