A pump made of two plastic syringes and a pushing block powered by a stepper motor, one of our Muscle SpikerShields and a 3D-printed base — that’s all that Kiley Branan, a high school senior from Indiana, needed to put together a prototype of a finger that you can open and close by flexing your arm.
If it sounds like a prosthetic device, it’s because that was what Kiley had originally intended it to be. But as she was figuring out the mechanics, the project evolved into a physical therapy tool that can’t replace a limb but can help people who were born without one or have had an amputation to learn kinesthetic and fine motor skills. It is customizable, easy to learn, and best of all — it’s very cheap. With high-tech bionic limbs often being prohibitively expensive, people should at least get a chance to adjust to them at a next-to-nothing cost.
So how exactly does it work? When you’re about to “tell” your muscles to move your limb, your brain sends electrical signals called action potentials to the spinal cord, which then passes on the message to your muscles via motor neurons. But what happens if a person is missing the limb? The message is still being transmitted. What’s missing, apart from the recipient limb, is something to “intercept” the message, gauge and interpret it.
That’s where Kiley’s device comes in. “It detects the nerve signals in the arm when they tell the muscle to move, and then tells the coded computer to push the syringes forward or backward so that they can move the finger. So the device helps detect something that already exists in a person who doesn’t have a finger,” the 18-year-old tells us over Zoom. The device would be helpful on two levels. On the one hand, it would allow for better fine-tuning and customization of the prosthetic limb before it gets made. On the other, it would prepare the person and improve their fine motor skills before they receive their first prosthetic. In a nutshell, Kiley says, it would “make the transition from living without a limb to using a prosthetic as seamless as possible.”
Since the last time we met (you and I, that is), BYB co-founder Tim Marzullo sent me some cool stuff. Not that it’s an exclusive privilege of interns, mind you! Anyone can find them in the “Muscle SpikerShield Bundle” kit.
With this bundle, you can do several very entertaining experiments such as seeing on your smartphone the action potentials that are produced when you move your muscles. You can also use the Muscle SpikerShield to control video games, robotics, and musical instruments.
It took a while for my board to pass customs, but it managed to arrive and we got to work right away. What I was most excited about was the arrival of new prototype from Backyard Brains – their very own customized Arduino board – codenamed NeuroDuino. (See above how handsome it is!)
Music is a passion, an art, a science, but maybe most importantly… music is fun! Variations of “electronic instruments” can be traced back as early as the late 1700s, but it is no exaggeration to say that the biggest breakthrough was the invention of Synthesizers in the 1950s. This marriage of music and electrical engineering undoubtedly has inspired and continues to inspire people to learn more about both the science of electricity and music.
Our newest trilogy of experiments is designed to get any student or hobbyist experimenting and developing with a new kind of musical interface…. a Brain-Music Interface! Electrical signals from your brain and your muscles will become the music you hear. Check out the experiments below!
Making Music with a Muscle
This lab is an excellent introduction to Arduino Programming and to Modifying Pre-Written Code. You and your students will begin by uploading new code to the Muscle SpikerShield, then we’ll show you just how to modify it so you can play your own musical creations!
Use the Muscle SpikerShield Pro to control up to six independent outputs. In this case, it will be musical tones. Time to generate music by moving your body. Your dancing makes the melody and the beat!
Then experiment and change the notes and tones your muscles will generate.
The prophecy is fulfilled, and you will become the music and the movement! Control a real musical instrument with your muscles via the MIDI interface. Now you can interface your own nervous system with real electronic instruments! Invent new styles and forms of music!
See it featured on the Chilean show El Hormiguero where guest Antonio Banderas gets to see how its done!