Over 11 sunny Ann Arbor weeks, our research fellows worked hard to answer their research questions. They developed novel methodologies, programmed complex computer vision and data processing systems, and compiled their experimental data for poster, and perhaps even journal, publication. But, alas and alack… all good things must come to an end. Fortunately, in research, the end of one project is often the beginning of the next!
Some of the fellows intend to continue working with on the research they began here while they’re away and many of these projects will be continued next summer! Definitely expect to hear updates from Nathan’s EEG Visual Decoding project and Joud’s Sleep Memory project. Additionally, two of the projects will continue throughout the next few months: Zach’s Songbird Identification and Shreya’s Electric Fish Detector projects will continue through to December!
Meet the Fellows, See the Projects
The fellows are off to a great start! Check out their blog posts introducing their projects:
Progress
The team has been working hard to bring their projects to life. Check out these blog posts on their rig construction and data collection efforts!
Conclusions
Our fellows experience the peaks and valleys of research this summer, but they all came out on top! Check out their final posts for their results, posters, and other details!
Continuations…
A few of our fellows are staying on throughout this next semester for longer term development projects! Zach is going to be back to working with his team on the Songbird Identification Device project, and Shreya will be working through to December on the Electric Fish Detector project. Expect updates on their progress from them soon!
Hey everyone! My summer of research in Ann Arbor has come to an end and it’s been an awesome experience. It’s been a busy 10 weeks of making daily improvements to my rig, resoldering the flyPAD, collecting data, and presenting what I found to others. The original goal of this project was to see if altering taste perception was possible by activating taste neurons with light – a new technique called optogenetics. To test this I stimulated channelrhodopsin in the neurons of fruit flies’ which give them a sweet taste response.
If you missed it, my first post: Optogenetics with the flyPAD, and my second post: The Taste Preferences of Fruit Flies
The FlyPAD setup in its full glory
Naturally, fruit flies prefer eating sugary as opposed to unsweet foods, similar to humans. This was the case when I offered them banana, a sweet fruit, and avocado, broccoli, and brussels sprouts, the unsweet alternatives. The flies always preferred banana over anything else. However, when Arduinos were programmed to pulse red light at the flies the same instant they sipped the unsweet foods, their gr5a neurons were activated, tricking them into thinking that what they were eating was sweet. The data is shown below, as bar graphs of the average number of sips and of sip % to see how food choice preference changed.
As we see here, the flies naturally prefer banana over avocado
But this preference switched when stimulation of channelrhodopsin activated their sweet tasting (gr5a) neuron
Flies, naturally, REALLY prefer banana over broccoli
The star preference we saw earlier disappeared, and the flies ate some of both foods: more of the newly sweet tasting broccoli and less of the banana.
Again, we see that banana wins the prize naturally.
And again, with stimulation, we see the sweet and the non-sweet options begin to level out
So, changing the subjective perception of taste is possible, as we could make a fly’s least preferred food become their absolute favorite! These findings show that subjective perception is alterable, but also that optogenetics is a neuroscience technique which can be done with little, affordable equipment.
If I end up continuing work on this project, I am interested to see how long the altered preference of the flies can persist. Anecdotally, I’ve seen that when the LED lights stop working there are some flies which continue to visit the unsweet food which they were tricked into tasting sweet. This wasn’t within the scope of my summer research, but I suspect that doing experiments on this would be interesting as it could reveal how powerful optogenetics is by creating a change in food choice preference that persists once stimulation trials have stopped.
After finding these results I compiled them into a poster which I recently presented at an UROP (undergraduate research opportunity program) symposium at the University of Michigan. It was fun explaining my summer’s work to the public and other researchers. Got a ribbon for it too!
Call me “Blue Ribbon”
A close up of my poster!
Aside from collecting data in the lab, I also had the chance to showcase my project with TED for their upcoming series of episodes focussed on the Backyard Brains’ research fellows’ projects. I was able to conduct experiments for them and give step by step walkthroughs of how they are carried out. Stay tuned on their posts coming around this fall to catch our episodes!
Getting filmed
Huge thanks to Greg for mentoring me this summer and introducing me to the world of Neuroscience research in the coolest way possible with BYB.
Thank you so much to Backyard Brains for giving me this amazing opportunity and to all the research fellows who made it a really fun summer!
The Fellows! Missing: Ilya and Nathan, they already had started presenting!
Today our Summer Research Fellows “snuck in” and presented their summer work at a University of Michigan, Undergraduate Research Opportunity Program (UROP) symposium! Over the two sessions our fellows presented their work and rigs to judges, other students, to university faculty, and community members. Some of the fellows are seasoned poster designers, but others had to learn quickly as they all rushed to get their posters printed in time! As our motto goes, we think it’s a shame that science is locked up in labs, and we pride ourselves on being able to take our DIY rigs wherever we go, so of course we encouraged the fellows to bring as much of their rigs as possible to show off in person. Science is much cooler when you can hold and see it in person.
Poster presentations are close to our heart here at Backyard Brains… You might be surprised that our company started out as a poster presentation! The “$100 Spike!” was the poster which launched a thousand ships. Our founders Tim and Greg developed the original SpikerBox as a passion project and presented it at a “Society for Neuroscience Conference” poster session. They pinned up their poster, tacked a hundred dollar bill to the board, and showed everyone who would listen to live action potentials on their first-generation SpikerBox. People expressed interest in purchasing the SpikerBox and Backyard Brains was born!
We’re proud to see our fellows continuing the tradition of creating affordable, DIY neuroscience experiments. Check out the photos and posters below, and be on the lookout for more blog posts from our fellows as they finish their write ups!