Backyard Brains Logo

Neuroscience for Everyone!

+1 (855) GET-SPIKES (855-438-7745)


items ()

Students learn Neural Engineering at University of Michigan’s “Xplore Engineering” camp

We visited University of Michigan’s campus during their annual “Xplore Engineering” camp. This multi-day event brings grandparents, parents, and their young scientists from all across the country to lovely summer Ann Arbor for a few days of science and engineering experiential opportunities.

(more…)

Fly a drone with your brain and eyes!

This University of Michigan student team developed a way to control a drone with a new kind of controller…

The Braincopter Team!

We work with students of all ages — from outreach to early elementary, to hands-on demonstrations, labs, and even research with students from fifth grade to… well, grad school and beyond!

We wanted to share this novel and exciting project which is the result of a group of Aerospace Engineering students who had an exciting question: Can we fly a plane, or at least a drone, with our thoughts?

It wasn’t an easy project, but with very minimal support on our end, they were able to get a prototype up and running within just the few weeks allotted to the project!

But how does it work?

Click to view the PDF

The students took advantage of two signals that you can record using the Heart and Brain SpikerBox – First, EEG (Electroencephalograms, or brain waves) could be used to “wake up” the drone (take off / ready) by opening your eyes, or “put it to sleep” (land / standby) by closing your eyes. This works because, when you record from your occipital lobe, alpha waves are present when your eyes are closed, and “disappear” when they are open – a phenomenon which the students leveraged for their “On/Off” switch.

Then they used EOG signals (Electrooculograms, from your eyes!) to tell the drone to move in different directions depending on if you are looking up, down, left, or right. This is possible thanks to the different electrical signals recorded when you look in different directions.

They were able to do this in real time, creating a very creative control scheme that could be applied to other devices as well. The sky is the limit for the future of this project! Or maybe not just the sky… maybe space isn’t even a limit anymore for students these days!

If you have a story to share, email us at hello@backyardbrains.com !


Listening In On Our Backyards

Acoustic Wildlife Recording promotes Citizen Science!

Here at Backyard Brains, we are all about citizen science, or the idea that the scientific community benefits from the collaboration with members of the general public for collecting and analyzing information about the natural world. Very DIY, very much the “for everyone” in our slogan. In 2017, Backyard Brains partnered with the University of Michigan’s Multidisciplinary Design Project (MDP) to focus neuroscience education on another kind of brain: birds! With the help of BYB, a team of undergraduate engineering students worked to develop a new kind of “Backyard Brain.” The idea was this: Create a low-cost device that could be deployed in backyards that would identify and record birdsongs!  This could be used to help track and log bird populations across the country, which is an important index of environmental health. Development of this project continued over the course of our 2017 summer fellowship , and that progress is detailed in Zach’s summer blog posts.  BYB and MDP will team up again for the project this year, with a new team and a new, expanded goal. But first, how did such a project come to mind? Naturally, it is the technological next step of a classic, “analog,” cataloging method…

 

The Audubon Christmas Bird Count

The National Audubon Society‘s annual “Christmas Bird Count” is perhaps the greatest example of democratized citizen science. Since 1900, volunteers have braved harsh, wintry conditions to help count and identify bird populations in their hometowns, as seen in Audubon’s photo above. These volunteers, from all across the country, then send in their findings, thus informing a national bird census.

The data gathered by initiatives like the Christmas Bird Count and Birdsong Identification project is incredibly important. Bird populations are very sensitive to environmental changes, making them a strong indicator of environmental health, stability, and possible effects of climate change. In this way, bird population trends can also be a lens to see our own world through.

This is the kind of citizen science that has inspired us, and others, to come up with devices which could help perform this task. Our work began in this field last year with the development of a “Birdsong Identification” device. The aim was to create a low cost, easily-distributed listening device which could be deployed to identify songbirds, and Zach’s project this summer started to do just that.

 

Birds, Rain, Wind, and More

The newest iteration of this project doesn’t stop at birdsongs. For 2018, the BYB-MDP partnership is looking to expand the reach of the project to create an acoustic environmental recorder that can also be listening for rainfall, wind, bats, coyotes, and other wildlife! There is a lot of information to be gleaned by turning an ear on our wilderness. Birdsongs are still on the menu, but with a new team (see above) and a new direction, the goal is to create a low-cost device which can be deployed and modified by both students and scientists to focus on whatever environmental indices interest them most!