Backyard Brains Logo

Neuroscience for Everyone!

+1 (855) GET-SPIKES (855-438-7745)


items ()

Khan Academy contest offers MASSIVE Scholarship for Student Videos “Explaining Challenging Concepts”

The Khan Academy “2020 Breakthrough Junior Challenge” comes at a time when student engagement in STEM is more critical than ever. If you are a remote student or are a professional (or maybe parent!) educator attempting to transition rapidly into remote/home teaching strategies, this could be an excellent opportunity to turn an at-home-assignment into a tremendous opportunity for your students!

Khan Academy’s 2020 Breakthrough Junior Challenge

This challenge encourages students to investigate a complex idea and then create a video that explains it in an interesting, accessible, and eloquent way!

Here is a description direct from Khan Academy:

“We’re proud to partner with the Breakthrough Junior Challenge video contest again this year. Students ages 13 through 18 are invited to create a short (under three minutes) video explaining a challenging concept in physics, mathematics, or the life sciences in an engaging, illuminating, and creative way. This year, there is an additional COVID-19 category, and students are encouraged to help educate the world about this global health crisis by sharing the science or math behind the causes, impacts and potential solutions. If you win, you’ll receive the college scholarship, your teacher will receive a $50,000 prize, and your school will get a new $100,000 science lab!”

You read that last sentence right: The winning student will receive a $250,000 scholarship, their teacher will win $50,000 worth of funding, and the school will receive $100,000 worth of funding for the renovation or development of a new science lab!

Making Complex Ideas Simple

Pre-Teen Hacker explaining her neuroscience-inspired Hackathon Project to a Judge

he mission to take the complexity out of science education is the heart of our work at Backyard Brains. Working with students from first grade through graduate school, Science Communication (or #SciComm) is at the forefront of our minds and work.

If it tickles your fancy, we encourage you to create a submission for the Khan Academy contest featuring an explanation related to Neuroscience (Perhaps even with hands-on demonstrations using our kits)!

If you are a student or a teacher who is seriously interested in using our resources to help create a powerful submission video, do feel free to email us at hello@backyardbrains.com and we will do what we can to coach and support you!

The TED Talk Approach

When we work with student research fellows, public presentations of their research are a part of the gig. In fact, “teaching” a subject you are attempting to master is a necessary learning tool! Attempting to explain a concept to someone else makes you realize your own knowledge-gaps (There isn’t an educator alive who hasn’t been stopped dead in their tracks by a seemingly simple question).

Here are 3 tips to a successful “science explanation” that will keep things fun, fascinating, and snappy:

  • Focus on the phenomenon
  • Use simple language
  • Emphasize the Importance and Urgency of your topic

Can you see how Dr. Gage used those three tips in action in the video above? It works!

Additional Example Resources

For some inspiration, ideas, and to learn from example, check out some of our video resources below, with a few different kinds of examples!


Two 99 Million-Year-Old Cockroaches Found in Amber – and They Uncannily Resemble Modern Roaches

Kafka couldn’t have imagined it better. Two specimens of the cockroach phylum were going about their business in a Myanmar cave about 99 million years ago. One day they got trapped in tree resin, which then turned to amber and preserved their little bodies to this day to tell us an impressive tale of time, life, death, and metamorphosis.

99 million-year-old cockroaches
Source: Gondwana Research

Both belonged to the Nocticolidae family, which comprises a couple dozen cockroach species inhabiting caves and caverns. Our small but hardy hairy-legged friends probably even managed to survive the mass extinction event that killed off the dinosaurs along with three-quarters of all life on the planet. The researchers, who recently published their findings in Gondwana Research, labeled the two fellas “the only known dinosaur age cave survivors”. It goes to show that cave roaches are far older than we used to think. Before this discovery, it was commonly held that they date back to 65 million years ago (the Cenozoic era).

From now on, we should know better than to underestimate them.

Let’s Get to Know Them Better!

The two species now carry the names of Mulleriblattina bowangi and Crenocticola svadba. While being pretty similar to each other, the Mulleriblattina seems to have been confined to the cave life, whereas Crenocticola was a bit more curious and probably ventured outside the cave.

The planet was not a friendly place back in the Mesozoic era. But our roaches didn’t seem to mind. Resilient as they were, they developed adequate traits that would allow them to thrive in damp and dark cave environments where no other creatures are known to have existed back then. Their very long antennae allowed them to better explore their gloomy surroundings, where eyes were almost useless. The wings got stunted since they no longer needed them. The insects weren’t brown or black like their modern-day domestic relatives, but yellowish or even transparent. What use is color anyway in a place that never gets any light?

What’s even more amazing is that all of those features make the Mulleriblattina look strikingly similar to its modern cave relatives. Some things never change, and neither does the roaches’ penchant for darkness.

Scary or Not So Scary?

By this point, you’re probably beginning to wonder about their size. No reason to shiver on that account! They were actually very small – just under 5 mm (roughly 1/4in). That wouldn’t make you cringe to the depths of your soul now, would it?

The length of their limbs probably would though. Especially the cerci (a pair of appendages protruding from underneath the bug’s rear end), which were significantly longer than in your average domestic roach.

But what did they eat? While the dinosaurs were still there, these two beauties may have feasted on their droppings that they would have found near the cave entrances. Once the gigantic reptiles went extinct, they probably made do with bats’ poop. How’s that for adaptability? The scientists even spotted some particles of undigested food in their lower abdomen. Ew!

There’s another mystery the researchers had to face. How did the tree resin make it into the cave to form amber? There is no exact answer. It probably poured down through cracks and crevices on the cave’s roof. Nature sure is resourceful while taking its course.

Mulleriblattina bowangi
Mulleriblattina bowangi – Source: Gondwana Research

Let’s Get Serious for a Moment… Could We Operate on These Ancient Bugs?

You guessed right – this beautiful story about ancient roaches trapped in amber is particularly exciting for us roach-loving nerds at Backyard Brains. As you may or may not know, we’ve been harboring a lifelong appreciation and even love for roaches of all shapes, sizes, and ages.

So it’s only natural that our first thought after reading the Gondwana Research paper was whether a Mulleriblatina or a Crenocticola could possibly carry a RoboRoach backpack. Alas, both were small and, frankly, too fragile for so heavy a burden. (Okay, maybe we could build a peewee backpack for them to sport). Our next concern was: if they lived here and now, would they readily lend themselves to one of our experiments? We weren’t happy with the answer. Their legs would have been too short and slender for us to operate on.

Our “Discoid” cockroach carrying the Roboroach Backpack

In fact, the longer cerci might even provide for new opportunities to record and stimulate the nervous system of the cockroach in interesting ways! Researchers have already used our SpikerBox kits to record from the cerci, and we even had a summer research fellow pursue a research project for a version of the RoboRoach which could control EVERY direction the roach moves by stimulating both the antenna and cerci.

The third thought was a sensible husbandry dilemma: would they want to even taste some of our lettuce or carrots for that buffet-style dinner? (It’s tough to get ahold of an ounce or two of dinosaur guano these days.) That one went unresolved.

Do They Resemble Our Domestic Roach?

After all, we have to acknowledge both the similarities and differences between, say, your average Periplaneta americana (American Cockroach) and these two antediluvian beauties. All roaches are fond of gloom, and all of them are apt survivors. There’s hardly such thing as picky eating among this crowd! Those are traces of their common, eons-old ancestry. It dates back 300 million years ago, to the time before the ancient supercontinent Gondwana broke up to huge chunks of land now known as Antarctica, Africa, South America, Australia, India.

But they are also mutually different. The American roach is your regular cohabitant that you may notice as it forages through your dimly lit basement. Even though it likes darkness, it will still tolerate some traces of light – that’s how much it loves your bread crumbs or even your dandruff! And luckily for our experiments that include bug leg surgery, it boasts a giant size compared to its distant relatives Mulleriblattina and Crenocticola. Its 1.6 inches of length is just enough to scare the wits out of you as it scuttles across your dinner table. It’s also known to be a genius in the evenings and a moron in the mornings. (Which makes us think that our cave-dwelling roaches must have been Einsteins!)

So next time you reach for your phone to dial pest control, think twice. Maybe it would be more ethical to let those little guys carry on with their lives. Some of them might even make it into history books one day.


Teacher Feature: Jess S.’s Superb Teacher Research!

With our impending (PAID!) Summer Research Experience for Teachers (RET), based on our previous successful Summer Research Fellowships, we wanted to highlight the successes of our pilot teacher for this upcoming program.

Meet Jessica S., Neuroscientist, Plant Scientist, and Pea-Pod Costume Designer Extraordinaire!

We all had goofy costumes featuring neuroscience research themes for the 4th of July Parade…

Jess participated in the Summer of 201’s undergraduate research fellowship as our first teacher fellow!

From Jess’s first blog post, detailing her research experience:

“Hi! I’m Jessica, a high school Biology/Anatomy&Physiology/Marine Biology/Forensics teacher in southern California.

“I’m the only high school teacher in this summer Fellowship of the Brain but hopefully I’ll make a good enough impression so they’ll invite more teachers in the future… after all, we ARE the market.”

Jess’s grit and hustle led to a successful poster presentation at the end of the summer, and then she began transforming her research into a curriculum for her students!

Then, the following summer of 2019, Jess joined the International Research Fellowship to continue her research, to perform new (pedagogical) research, and preparing articles for publication – which have been accepted and will be published soon!

For a deeper look at her journey, and for a taste of what you might experience during your summer RET, check out all of Jessica’s Blog Posts:

#1 – Introducing Pavlov’s…Plants?
#2 – Plant Nanny: If at first you don’t succeed, Try, try, try again
#3 – A Peagrim’s Progress, or, “Let’s get down to pea-zness”
#4 – New kid on the block

Check out the CALL FOR SCIENCE TEACHERs below to learn more about the program and to apply!