Backyard Brains Logo

Neuroscience for Everyone!

+1 (855) GET-SPIKES (855-438-7745)


items ()

First Place at Science Fair for Student using BYB Gear

My name is Azrin Khan and I am currently a junior (11th grade) in Francisco Bravo Medical Magnet Senior High School in California. My purpose is to build a device which will alert humans when they are going to have muscle cramps, and it will keep a record of the intensity of the cramp and how many times it happened. In addition to that, I am also going to build an app where all the data will be stored, and their doctor will also have access to the data so that any health issues can be determined and kept in control. This is an idea I got after watching all the diseases that have muscle cramps as their symptoms, and I believe having muscle cramps should not be neglected but it should be greatly taken care of and kept track of.

I asked Backyard Brains if they could help me with my project, and so I started to work with their Muscle SpikerShield. At the Bravo/USC Science and Engineering Fair last month, I won First Place in my category which was Mathematics and Computer Sciences.

Engineering Goal

The goal of this project was to construct a device which will assist epileptics to be alerted of their condition, and alert others around them to be on the lookout for danger when muscles contract abnormally in the body. Also, code to interpret the data recorded from the device into a human understandable language and using a live graph to plot real-time data which will be useful to both the individual and doctors and other professionals to be updated on the most recent conditions. This is the very first device that uses the electrical potential measured from muscle contraction to identify muscle cramps.

Overview of Project

This project uses an alarming device which sounds whenever muscles contract abnormally in a person’s body so that others nearby can also be aware of the patient’s condition. To test if the device was working, I tested on Lumbricus Terrestris (earthworms) and measured the electrical potential for 30 seconds on each earthworm. The device can also record the electrical potential every second so that the recorded information can be shared with their doctors and other professionals through these updates regarding their conditions. The live graph uses Python 2.7.15, and Python IDLE was used as the developing environment. Piezo Speakers connected to the Arduino Uno and Backyard Brains’ Muscle SpikerShield combination device alarms as soon as the electrical potential units reach 95 to 100. In the future, I would like to use an app to make the live graph available to doctors so that they can keep up with their patient’s health.

Results

In conclusion, my device is functioning properly and in addition to my device, I’ve also designed a shirt with a pocket on the left sleeve that patients can use to hold their devices (see below). The Bravo/USC Science and Engineering Fair 2019 was a huge success for me. In my category, Computer Science and Mathematics, there were very impressive projects; someone used a drone to construct a gas sensor, while another participant coded a website that is designed to help people with OCD. I had a total of three judges who interviewed me, and two of the judges were professors from the KECK School of Medicine of USC and another judge was a lab PI also from the KECK School of Medicine of USC.

Prototype Design

 


If you have any examples of our gear in the field, don’t hesitate to email us and share your stories! Send us a note at hello@backyardbrains.com 

Have an idea for your own experiment?

Recreate this experiment or perform your own with the Muscle SpikerShield Bundle!


DIY Neuroprosthetics: A Third Thumb?

The Third Thumb

An 8th Grader’s Exploration in DIY Neuroprosthetics

Several months ago, a crowdfunded classroom got their hands on several of our neuroprosthetic kits – like The Claw and the Muscle SpikerShield Bundle. This allowed students in Nokomis Regional schools to begin experimenting with hands-on neuroscience experiments! One of the students, 8th grader Kaiden K., was interested in developing a prosthetic, but his project had a twist question: What if we had a third thumb?

The Third Thumb

Kaiden’s project is twofold: First, it is a project on the history of prosthetics. From wooden hands to mechanical prosthetics, and now modern, low-cost DIY prosthetics, there have been a lot of remarkable developments along the way as we strive to create new opportunities for people to bring mobility and ability into their lives.
Using a 3D printer and the tools his teacher had crowdsourced on Donor’s Choose, Kaiden was able to develop a neuroprosthetic which anyone can plug into and control with their brain!
By recording from their muscles, Kaiden is able to put other students at the science fair in control of the prosthetic hand.
The second part of the project is still underway: developing a neuroprosthetic which anyone can wear which augments typical human ability and mobility, by adding the third thumb! To put it fantastically: Kaiden is developing cybernetic human enhancements. Literally, 8th graders are contributing to helping us become cyborgs! Too cool.

In an example of parallel, historic discovery – Kaiden had the idea for an extra thumb and began his RnD… then just like many other great minds, discovered he wasn’t the only one doing this work!

This idea has been explored by prosthetic designer Dani Clode – she gave a TEDx talk which is also a great watch!

See her TEDx talk here to learn more about the Third Thumb project.

We’re excited to see Kaiden further refine and develop his project. Kaiden wants to investigate multiple degrees of freedom, perhaps 2-axis control, and see what he can develop. We’ll be sure to update you as he continues experimenting!

Required Kit:
Muscle SpikerShield

Develop your own Neuroprosthetics using the Muscle SpikerShield!

Buy The Muscle SpikerShield


Student Project: Neuroprosthetic Effectivity

Hello everyone. My name is Pranav Senthilkumar and I am a junior at Mission San Jose High School in Fremont, CA (SFO Bay Area) For my project at the Alameda County Science fair last year, I designed a neuroprosthetic device using the original SpikerBox and the Human Neuroprosthetic kit.

What is a Neuroprosthetic, and how does it relate to my Project?

Many people are currently unable to live their lives to their full potential due to a disability. Neuroprosthetics is a relatively new field which is left mostly unexplored. My goal is to make an impact on the lives of patients who are currently suffering from disabilities. Since I had previously contacted Dr.Gage while assembling a Backyard Brains project, and he was very helpful, I sent Dr. Gage another email. When I checked my email the next morning, Dr. Timothy Marzullo, cofounder of BYB, had read my suggestion, and directed me to some existing BYB experiments which I could use as a base. (Particularly interesting was the Anuradha Rao Memorial Experiment). After Dr Marzullo helped me refine my idea, I was ready to start.

My plan was to create a successful complete neuroprosthetic for an earthworm. Many prosthetic limbs on the market are simply placeholders for the missing limb, and do not restore full functionality. While prosthetic limbs are definitely superior to having no limb at all, they certainly do not allow the patient to live a normal life. Neuroprosthetics, however, have the potential to add a new dimension to the patient’s mobility, allowing patients to live a normal life. The basic premise of these neuroprosthetic devices is that the brain controls the prosthetic limb, thus allowing the patient to perform tasks that a healthy person can perform. There are millions of research facilities taking use of this incredible opportunity to create the most advanced neuroprosthetic. Originally I planned to use a cricket and an earthworm to test my model as both of these creatures have nervous systems closely related to that of a human. In previous years, I have tested both the neural activity of crickets and the effect of drugs on the heart rate of a daphnia magna, so this year I wanted to use my previous projects as stepping stones to make something impactful. My original intended test subject was the cricket, however that did not provide the desired results (for reasons that I’ll expand on later.) After this unsuccessful attempt, I looked for other possible test species. Eventually when I tested the Angleworm, the neuroprosthetic provided excellent results, and so all future trials were performed on the Angleworm.

My Project:

After reconfiguring the original BYB Neuron SpikerBox with select parts of the Neuroprosthetics kit, I began by testing my new neuroprosthetic device on crickets, since crickets and cockroaches are usually the primary test species for BYB projects. However, after a few trials, it was clear that the cricket simply wasn’t a feasible test species. After realizing that the earthworm could be a potential test species, I began looking for pet stores in my area which carried earthworms. Unfortunately, none of the pet stores in my area carried earthworms, so I had to be content with using the angleworm as a substitute. Since earthworms are proven to have a nervous system quite similar to that of a human, I was very optimistic about this trial. The Angleworms were successful!

To perform the experiment, first place each angleworm in a container, and apply each of the solutions to the container. Check the heart rate immediately after the previous step has been completed (the heart rate can be tested by simply placing the earthworm under a high configuration microscope and counting the number of beats). Next, record the results, and apply each or the solutions to the angleworms. Now, amputate the hind portion of each of the angleworms. Finally, place both parts of the angleworm on the neuroprosthetic device, and if your device is working, you should see the hind portion of the angleworm mimic the movements of the front portion. There is, however, a time delay. This is a measure of the effectivity of the neuroprosthetic. A lower time delay means it is more effective.

1 2 3

While building the neuroprosthetic device was the most time consuming part of my project, the ultimate goal was to test whether or not different *drugs had an impact on the effectivity of the neuroprosthetic. First of All, I wanted to test whether stimulants or depressants had any major effect on the effectivity of neuroprosthetics as opposed to the “control group” (treated with a normal distilled water solution). After running multiple trials, I came to the following conclusions:

-Stimulants such as Caffeine can have up to a 40% increase in the effectivity of the neuroprosthetics.
-Depressants Such as Acetaminophen Can have up to a 25-33% decrease in effectivity of neuroprosthetic.

Figure 1 Figure 2

From this study, we can draw the conclusion that treating neuroprosthetic patients with stimulants like caffeine can improve the quality of their lives significantly.

Afterword: Choosing the right test species:

At first, I tested my new neuroprosthetic on a cricket. The results, however, were far from optimal. The neuroprosthetic simply would not function, and the prosthetic limb would be “dead,” without any sign of movement. At first, I thought that there may be something wrong with the device. I finally convinced myself to test other species on the device, and it turned out that the angleworm was the perfect model organism for my system. Furthermore, it was much easier to observe the heart rate of an angleworm. A possible reason for the success of the angleworm is that the nervous system is incredibly simple, while maintaining a remarkable similarity to that of a human.