Backyard Brains Logo

Neuroscience for Everyone!

+1 (855) GET-SPIKES (855-438-7745)

items ()

Backyard Brains Donates Neuroscience Gear to Science Fair Winners

backyard brains donates neuroscience gear

Many a high schooler has won a science fair or two using our neuroscience gear. But this science fair season, we decided to support the next generation of scientific innovators in a slightly different way: by donating prizes to the top projects at the Larchmont Charter High School Science Fair in Los Angeles!

This event is their science department’s biggest sci-comm gathering of the year, where students in grades 9-12 showcase their best models, experiments, and inventions. The range of projects on display was impressive: from greenhouse effect simulations to the impact of global warming on agriculture, holographic projectors, the development of a recycled plastic wood alternative construction material, and even a colony on Mars.

And the victors? Well, they’re nothing short of impressive. Two of them, Owen Fishman and Reese Fishman, won the top prize for developing a biodegradable straw and conducting an experiment to test its rate of breakdown under various conditions. Not only is their project a nod to the importance of sustainability, but it’s also a great reminder of how science helps solve real-life problems. And now they’ll get to try their hands at DIY neuroscience with the SpikerBox, the Claw, and the SpikerShield! Other prizes were donated by Horizon Education, JPL, the Planetary Society, and Plant Wave.

So here’s to the bright minds and their brainy projects! Congratulations to all the participants and winners of the Larchmont Charter High School Science Fair. We can’t wait to see what you’ll accomplish next. (Hint: It may or may not have to do with spikes!)

First Place at Science Fair for Student using BYB Gear

My name is Azrin Khan and I am currently a junior (11th grade) in Francisco Bravo Medical Magnet Senior High School in California. My purpose is to build a device which will alert humans when they are going to have muscle cramps, and it will keep a record of the intensity of the cramp and how many times it happened. In addition to that, I am also going to build an app where all the data will be stored, and their doctor will also have access to the data so that any health issues can be determined and kept in control. This is an idea I got after watching all the diseases that have muscle cramps as their symptoms, and I believe having muscle cramps should not be neglected but it should be greatly taken care of and kept track of.

I asked Backyard Brains if they could help me with my project, and so I started to work with their Muscle SpikerShield. At the Bravo/USC Science and Engineering Fair last month, I won First Place in my category which was Mathematics and Computer Sciences.

Engineering Goal

The goal of this project was to construct a device which will assist epileptics to be alerted of their condition, and alert others around them to be on the lookout for danger when muscles contract abnormally in the body. Also, code to interpret the data recorded from the device into a human understandable language and using a live graph to plot real-time data which will be useful to both the individual and doctors and other professionals to be updated on the most recent conditions. This is the very first device that uses the electrical potential measured from muscle contraction to identify muscle cramps.

Overview of Project

This project uses an alarming device which sounds whenever muscles contract abnormally in a person’s body so that others nearby can also be aware of the patient’s condition. To test if the device was working, I tested on Lumbricus Terrestris (earthworms) and measured the electrical potential for 30 seconds on each earthworm. The device can also record the electrical potential every second so that the recorded information can be shared with their doctors and other professionals through these updates regarding their conditions. The live graph uses Python 2.7.15, and Python IDLE was used as the developing environment. Piezo Speakers connected to the Arduino Uno and Backyard Brains’ Muscle SpikerShield combination device alarms as soon as the electrical potential units reach 95 to 100. In the future, I would like to use an app to make the live graph available to doctors so that they can keep up with their patient’s health.


In conclusion, my device is functioning properly and in addition to my device, I’ve also designed a shirt with a pocket on the left sleeve that patients can use to hold their devices (see below). The Bravo/USC Science and Engineering Fair 2019 was a huge success for me. In my category, Computer Science and Mathematics, there were very impressive projects; someone used a drone to construct a gas sensor, while another participant coded a website that is designed to help people with OCD. I had a total of three judges who interviewed me, and two of the judges were professors from the KECK School of Medicine of USC and another judge was a lab PI also from the KECK School of Medicine of USC.

Prototype Design


If you have any examples of our gear in the field, don’t hesitate to email us and share your stories! Send us a note at 

Have an idea for your own experiment?

Recreate this experiment or perform your own with the Muscle SpikerShield Bundle!

DIY Neuroprosthetics: A Third Thumb?

The Third Thumb

An 8th Grader’s Exploration in DIY Neuroprosthetics

Several months ago, a crowdfunded classroom got their hands on several of our neuroprosthetic kits – like The Claw and the Muscle SpikerShield Bundle. This allowed students in Nokomis Regional schools to begin experimenting with hands-on neuroscience experiments! One of the students, 8th grader Kaiden K., was interested in developing a prosthetic, but his project had a twist question: What if we had a third thumb?

The Third Thumb

Kaiden’s project is twofold: First, it is a project on the history of prosthetics. From wooden hands to mechanical prosthetics, and now modern, low-cost DIY prosthetics, there have been a lot of remarkable developments along the way as we strive to create new opportunities for people to bring mobility and ability into their lives.
Using a 3D printer and the tools his teacher had crowdsourced on Donor’s Choose, Kaiden was able to develop a neuroprosthetic which anyone can plug into and control with their brain!
By recording from their muscles, Kaiden is able to put other students at the science fair in control of the prosthetic hand.
The second part of the project is still underway: developing a neuroprosthetic which anyone can wear which augments typical human ability and mobility, by adding the third thumb! To put it fantastically: Kaiden is developing cybernetic human enhancements. Literally, 8th graders are contributing to helping us become cyborgs! Too cool.

In an example of parallel, historic discovery – Kaiden had the idea for an extra thumb and began his RnD… then just like many other great minds, discovered he wasn’t the only one doing this work!

This idea has been explored by prosthetic designer Dani Clode – she gave a TEDx talk which is also a great watch!

See her TEDx talk here to learn more about the Third Thumb project.

We’re excited to see Kaiden further refine and develop his project. Kaiden wants to investigate multiple degrees of freedom, perhaps 2-axis control, and see what he can develop. We’ll be sure to update you as he continues experimenting!

Required Kit:
Muscle SpikerShield

Develop your own Neuroprosthetics using the Muscle SpikerShield!

Buy The Muscle SpikerShield