Backyard Brains Logo

Neuroscience for Everyone!

+1 (855) GET-SPIKES (855-438-7745)


items ()

How the SpikerBox Revolutionized K12 STEM Education… and just what is a SpikerBox?

How the SpikerBox Revolutionized K12 STEM Education…

and just what is a SpikerBox?

Backyard Brains exists today because of a once-lofty goal: To turn a $40,000+ rack of graduate-level electronics into a $100 kit that students could use in the classroom to perform real, hands-on neuroscience experiments. A decade later, we have developed four lines of products that can get you involved in many aspects of neuroscience!

Enter the SpikerBox! SpikerBoxes are our name for the educational electronics we developed, a low-cost bioamplifier that can record “spikes,” or action potentials. Spikes are the universal signals which bring life to thought, sensation, movement, behavior, actions, reactions… everything that makes us living creatures!

The SpikerBox:
Students say Yes to Neuroscience!

Thanks to SpikerBoxes, more than 45,000 people have seen real, live action potentials, either from their own body, somebody else’s, or from an insect or plant! And those are just the people we’ve counted… Since we began shipping in 2009, nearly 13,000 SpikerBoxes have hit the streets, bringing neuroscience to students, hobbyists, and researchers on every continent and in over 80 countries (Recently, we sent our first kit ever to Cyprus!)

Teachers we work with are excited to bring hands-on science experiments into the classroom. We offer free educational materials that pair with all of our kits, and we are developing curricula to help bring neuroscience into specific programs like Next Generation Science Standards and Project Lead The Way! Coming soon, we are expanding our Teacher Portal to help you share Backyard Brains with your students. In addition, we developed a free, open-source spike recording software (Called… you guessed it, SpikeRecorder) that lets you use the tech you already have (Chromebooks, iPads, PC, Android Phones) to record and analyze the signals your SpikerBox is recording. Our SpikerBoxes come in a few flavors, depending on the signal you want to read.


The Neuron SpikerBox

First off, the Neuron SpikerBox. This is the SpikerBox that launched 10,000 ships. Our O.G. product. Before we were a company, we were simply a goal: to create an affordable neuroscience kit to increase accessibility for younger learners, and that goal manifested itself as the Neuron SpikerBox. It allows students to record from the nervous systems of invertebrates, like cockroaches, crickets, and grasshoppers, and perform experiments to learn about how neurons and the nervous system work.

It is also an important segue into using animal models and model organisms to learn about our own nervous systems! We wouldn’t have models without model organisms, as many developments in neuroscience were made by studying the nervous systems of invertebrates and other, relatively “simple,” organisms. It is also an opportunity to talk about ethics: our cockroach prep for the Neuron SpikerBox is non-lethal, but it is invasive. A good conversation to have with any budding scientist is the measured, societal cost-benefit analysis of doing experiments like these.

What can a student learn by performing experiments with the Neuron SpikerBox? They will learn about neurons, action potentials, and how these spikes of electricity become meaningful signals to the organisms in which they are present.

Our Neuron SpikerBox is a fantastic learning tool, but it is also a powerful research tool. We have published several scientific articles featuring data which we recorded from grasshoppers, dragonflies, and other creatures using our Neuron SpikerBox.


The Muscle SpikerBox

After we perfected our bioamplifier for model organisms, we wanted to get a little more personal. After all, what better way to learn about science than to learn how your own body works? The Muscle SpikerBox records spikes in the form of Electromyograms (EMGs). EMGs are recordings of the electrical activity in our muscles! When our brain sends a signal to our muscles to move, there is an electrical synapse where the nerve meets the muscle, and our sensors record that! Used in medicine, sports science, and physiology, EMGs are an exciting way to introduce students to practical science where they are the experiment! For example, a great first experiment is recording varying rates of muscle fatigue. In fact, we had a fifth grader win her district Science Fair by comparing muscle fatigue between her left and right arms!


The Heart and Brain SpikerBox

This SpikerBox gets to the real heart of Neuroscience. It is a multi-functional bioamplifier that focuses on your involuntary nervous system, the automatic responses that keep us going. The heartbeat is the electrical signal that most students are already familiar with through pop culture. Many of them could roughly draw what a heartbeat signal should look like, and they know a flatline is, well, very bad. Drawing from this intuitive knowledge, it’s exciting to show students their heart rates, explain to them what exactly that spikey shape they’ve seen on TV means, and teach them about the electrical impulses which keep our pulse up.

Then, there is the Brain. With this dual-function SpikerBox, you can have students see and experiment with their actual brain waves or Electroencephalograms (EEGs). No, I’m not talking about EMG artefacts or some cheesy “Brain Power” game. Our intro experiment with this kit has students see the activity of their vision center, the occipital lobe. When your eyes are open, they are processing a lot of activity, but when they are closed, that part of the brain calms down. Here we can see Alpha Waves, kind of like the brain’s “on-hold” pattern, emerge. Our co-founders never saw EEG in real life until after they had already received their doctorates. Just let that sink in. Elementary schoolers today have access to tech that was too inconvenient to demonstrate to graduate students just several years ago! Talk about a NeuroRevolution!


The Plant SpikerBox

Finally, we have our SpikerBox that is harnessing the power of electrophysiology in uncharted territory: plants! When we ask students about what makes us alive, many answer “brains.” When asked to expand on that, many say the fact that we can move around. But what about the Venus Flytrap, a plant that can move in response to stimulation, without an ostensible brain? With this SpikerBox we can unlock the secret electrical language used in plants, demonstrating fundamental neuroscience principles in an unconventional model organism, and spreading the wonder of understanding how living creatures work!

Experiments!

The SpikerBoxes are our way of making advanced neuroscience accessible to the masses. To facilitate this and to cut user costs, all of our experiments, software, and educational materials are available for free! Check out our experiments and figure out which SpikerBox is right for you, your classroom, or your backyard science lab! What will you discover?


Project Idea: Can you beat Terry Crews’ Garage full of Muscle Powered Instruments?

We can’t help you get as strong as Terry, but we can teach you the tech to build this yourself!

Following the launch of our Brain-Music Interface experiment trilogy, we thought it was appropriate to revisit this classic…

While we have our suspicions that there may be a bit more stimulation rather than control going on in this video… it’s still hilarious and totally plausible!

(more…)

First Place at Science Fair for Student using BYB Gear

My name is Azrin Khan and I am currently a junior (11th grade) in Francisco Bravo Medical Magnet Senior High School in California. My purpose is to build a device which will alert humans when they are going to have muscle cramps, and it will keep a record of the intensity of the cramp and how many times it happened. In addition to that, I am also going to build an app where all the data will be stored, and their doctor will also have access to the data so that any health issues can be determined and kept in control. This is an idea I got after watching all the diseases that have muscle cramps as their symptoms, and I believe having muscle cramps should not be neglected but it should be greatly taken care of and kept track of.

I asked Backyard Brains if they could help me with my project, and so I started to work with their Muscle SpikerShield. At the Bravo/USC Science and Engineering Fair last month, I won First Place in my category which was Mathematics and Computer Sciences.

Engineering Goal

The goal of this project was to construct a device which will assist epileptics to be alerted of their condition, and alert others around them to be on the lookout for danger when muscles contract abnormally in the body. Also, code to interpret the data recorded from the device into a human understandable language and using a live graph to plot real-time data which will be useful to both the individual and doctors and other professionals to be updated on the most recent conditions. This is the very first device that uses the electrical potential measured from muscle contraction to identify muscle cramps.

Overview of Project

This project uses an alarming device which sounds whenever muscles contract abnormally in a person’s body so that others nearby can also be aware of the patient’s condition. To test if the device was working, I tested on Lumbricus Terrestris (earthworms) and measured the electrical potential for 30 seconds on each earthworm. The device can also record the electrical potential every second so that the recorded information can be shared with their doctors and other professionals through these updates regarding their conditions. The live graph uses Python 2.7.15, and Python IDLE was used as the developing environment. Piezo Speakers connected to the Arduino Uno and Backyard Brains’ Muscle SpikerShield combination device alarms as soon as the electrical potential units reach 95 to 100. In the future, I would like to use an app to make the live graph available to doctors so that they can keep up with their patient’s health.

Results

In conclusion, my device is functioning properly and in addition to my device, I’ve also designed a shirt with a pocket on the left sleeve that patients can use to hold their devices (see below). The Bravo/USC Science and Engineering Fair 2019 was a huge success for me. In my category, Computer Science and Mathematics, there were very impressive projects; someone used a drone to construct a gas sensor, while another participant coded a website that is designed to help people with OCD. I had a total of three judges who interviewed me, and two of the judges were professors from the KECK School of Medicine of USC and another judge was a lab PI also from the KECK School of Medicine of USC.

Prototype Design

 


If you have any examples of our gear in the field, don’t hesitate to email us and share your stories! Send us a note at hello@backyardbrains.com 

Have an idea for your own experiment?

Recreate this experiment or perform your own with the Muscle SpikerShield Bundle!