Distance learning just got a lot easier for the 7th grade students of Abington Avenue School (Newark, NJ)! Their teacher Khalil Gordon has recently won $1,000 in Neuron SpikerBox Bundles. More precisely, they will get 13 of BYB research kits that they can use for project-based science learning from the comfort of their PJs!
The funding is part of Society for Science & the Public’s STEM Research Grants totaling $100,000, awarded to 100 middle and high school teachers from all across the U.S. They put special emphasis on schools in underserved and underrepresented communities.
This year, the program was geared toward distance learning, striving to provide teachers with resources and tools that facilitate hands-on science labs that students can do at home. As we’ve already written, a Harvard study has shown how well our bioamplifiers perform in student dorms, living rooms, bedrooms, or just about anywhere.
Neuron SpikerBox and other standards-aligned Remote Labs lie at the intersection of various nerdy disciplines such as biology, electrophysiology, computer science. They are already in use in hundreds of U.S. schools, colleges and other institutions – from elementary to higher education. The tweets speak for themselves!
What lies at the intersection of math and medicine? Why many things, of course. Certainly more than could possibly fit into a blog post! But today, I am going to talk about the connection between brain function and numbers.
My name is Natalia Díaz and I am a student of Mathematical Engineering at the University of Santiago de Chile. Ever since I can remember, I have been tantalized by mathematics and medicine (especially brain function). The opportunity to mix both subjects finally arose when I entered college. That is how Neuroscience popped into my life!
To get my degree, I must complete my internship and my thesis. That’s how I started working with my mentors Dr. Patricio Rojas (University of Santiago) and Dr. Patricio Orio (University of Valparaíso). We are investigating, through numerical simulations, the effect of the electrical synapse topology between inhibitory neurons.
For this, we use a neural mathematical model of a mixed network of inhibitory and excitatory neurons of the cerebral cortex, and we study different types of topology (“all with all” or lattice style) of connection between inhibitory neurons characterizing the patterns obtained.
For example, the figure below shows a significant difference in network synchronization using different topologies. In the first yellowy-whitish graph, there is no gap junction (electrical synapse). The second shows a gap junction with a lattice topology, and in the last one we apply a gap junction with an all-to-all topology. To plot this, we use different values for the mean synaptic strength between excitatory neurons (mGsynE) and for the mean synaptic strength between inhibitory neurons (mGsynI). Lots of abbreviations, I know. But I promise they are fun!
Can you imagine riding on an autonomous car that knows your emotions and thoughts better than you do?
Neither can we, but our co-founder and CEO Dr. Greg Gage can, and he isn’t freaked out by the prospect. On the contrary, he’s quite optimistic about it. How come?
Human-centered technology is the keyword here. As Senior TED Fellows, Greg and artist Sarah Sandman were invited by Lexus to give their two cents on the future of AV (autonomous vehicles) operated by AI rather than humans. They both think that there is a possibility of a car that is not driven by humans yet remains human-driven – or rather, in Greg’s vision, emotion-driven!
Can a Car Feel You?
Emotions are, Greg says in his latest TED video, one of the major evolutionary inventions that we’ve developed in order to better interact with one another. A human-centered autonomous vehicle should therefore be equipped to detect not only obstacles on the road and other external signals, but also the passenger’s state of mind. Are you tired? The seat’s already lowering down into a bed and tucking you in with some chill-out music. There are sensors picking up your bodily signs such as blood pressure or EKG, so the car can give you exactly what you need before you even know you’re needing it.